Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-matrix Factorization Attention
We propose novel attention architectures, Multi-matrix Factorization Attention (MFA) and MFA-Key-Reuse (MFA-KR). Existing variants for standard Multi-Head Attention (MHA), including SOTA methods like MLA, fail to maintain as strong performance under stringent Key-Value cache (KV cache) constraints. MFA enhances model capacity by efficiently scaling up both the number and dimension of attention heads through low-rank matrix factorization in the Query-Key (QK) circuit. Extending MFA, MFA-KR further reduces memory requirements by repurposing the key cache as value through value projection re-parameterization. MFA's design enables strong model capacity when working under tight KV cache budget, while MFA-KR is suitable for even harsher KV cache limits with minor performance trade-off. Notably, in our extensive and large-scale experiments, the proposed architecture outperforms MLA and performs comparably to MHA, while reducing KV cache usage by up to 56% and 93.7%, respectively.
Privacy-Preserving Distributed Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is an effective data representation tool with numerous applications in signal processing and machine learning. However, deploying NMF in a decentralized manner over ad-hoc networks introduces privacy concerns due to the conventional approach of sharing raw data among network agents. To address this, we propose a privacy-preserving algorithm for fully-distributed NMF that decomposes a distributed large data matrix into left and right matrix factors while safeguarding each agent's local data privacy. It facilitates collaborative estimation of the left matrix factor among agents and enables them to estimate their respective right factors without exposing raw data. To ensure data privacy, we secure information exchanges between neighboring agents utilizing the Paillier cryptosystem, a probabilistic asymmetric algorithm for public-key cryptography that allows computations on encrypted data without decryption. Simulation results conducted on synthetic and real-world datasets demonstrate the effectiveness of the proposed algorithm in achieving privacy-preserving distributed NMF over ad-hoc networks.
Collaborative filtering based on nonnegative/binary matrix factorization
Collaborative filtering generates recommendations based on user-item similarities through rating data, which may involve numerous unrated items. To predict scores for unrated items, matrix factorization techniques, such as nonnegative matrix factorization (NMF), are often employed to predict scores for unrated items. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. Previous studies have employed NBMF for image analysis where the data were dense. In this paper, we propose a modified NBMF algorithm that can be applied to collaborative filtering where data are sparse. In the modified method, unrated elements in a rating matrix are masked, which improves the collaborative filtering performance. Utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
We introduce new differentially private (DP) mechanisms for gradient-based machine learning (ML) with multiple passes (epochs) over a dataset, substantially improving the achievable privacy-utility-computation tradeoffs. We formalize the problem of DP mechanisms for adaptive streams with multiple participations and introduce a non-trivial extension of online matrix factorization DP mechanisms to our setting. This includes establishing the necessary theory for sensitivity calculations and efficient computation of optimal matrices. For some applications like >!! 10,000 SGD steps, applying these optimal techniques becomes computationally expensive. We thus design an efficient Fourier-transform-based mechanism with only a minor utility loss. Extensive empirical evaluation on both example-level DP for image classification and user-level DP for language modeling demonstrate substantial improvements over all previous methods, including the widely-used DP-SGD . Though our primary application is to ML, our main DP results are applicable to arbitrary linear queries and hence may have much broader applicability.
Topic Analysis of Superconductivity Literature by Semantic Non-negative Matrix Factorization
We utilize a recently developed topic modeling method called SeNMFk, extending the standard Non-negative Matrix Factorization (NMF) methods by incorporating the semantic structure of the text, and adding a robust system for determining the number of topics. With SeNMFk, we were able to extract coherent topics validated by human experts. From these topics, a few are relatively general and cover broad concepts, while the majority can be precisely mapped to specific scientific effects or measurement techniques. The topics also differ by ubiquity, with only three topics prevalent in almost 40 percent of the abstract, while each specific topic tends to dominate a small subset of the abstracts. These results demonstrate the ability of SeNMFk to produce a layered and nuanced analysis of large scientific corpora.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
Greenformer: Factorization Toolkit for Efficient Deep Neural Networks
While the recent advances in deep neural networks (DNN) bring remarkable success, the computational cost also increases considerably. In this paper, we introduce Greenformer, a toolkit to accelerate the computation of neural networks through matrix factorization while maintaining performance. Greenformer can be easily applied with a single line of code to any DNN model. Our experimental results show that Greenformer is effective for a wide range of scenarios. We provide the showcase of Greenformer at https://samuelcahyawijaya.github.io/greenformer-demo/.
PANTHER: Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning
Genetic pathways usually encode molecular mechanisms that can inform targeted interventions. It is often challenging for existing machine learning approaches to jointly model genetic pathways (higher-order features) and variants (atomic features), and present to clinicians interpretable models. In order to build more accurate and better interpretable machine learning models for genetic medicine, we introduce Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning (PANTHER). PANTHER selects informative genetic pathways that directly encode molecular mechanisms. We apply genetically motivated constrained tensor factorization to group pathways in a way that reflects molecular mechanism interactions. We then train a softmax classifier for disease types using the identified pathway groups. We evaluated PANTHER against multiple state-of-the-art constrained tensor/matrix factorization models, as well as group guided and Bayesian hierarchical models. PANTHER outperforms all state-of-the-art comparison models significantly (p<0.05). Our experiments on large scale Next Generation Sequencing (NGS) and whole-genome genotyping datasets also demonstrated wide applicability of PANTHER. We performed feature analysis in predicting disease types, which suggested insights and benefits of the identified pathway groups.
Low Rank Factorization for Compact Multi-Head Self-Attention
Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-the-art approaches for many NLP tasks use large pre-trained language models such as BERT, XLNet and so on for learning representations. These models are based on the Transformer architecture that involves recurrent blocks of computation consisting of multi-head self-attention and feedforward networks. One of the major bottlenecks largely contributing to the computational complexity of the Transformer models is the self-attention layer, that is both computationally expensive and parameter intensive. In this work, we introduce a novel multi-head self-attention mechanism operating on GRUs that is shown to be computationally cheaper and more parameter efficient than self-attention mechanism proposed in Transformers for text classification tasks. The efficiency of our approach mainly stems from two optimizations; 1) we use low-rank matrix factorization of the affinity matrix to efficiently get multiple attention distributions instead of having separate parameters for each head 2) attention scores are obtained by querying a global context vector instead of densely querying all the words in the sentence. We evaluate the performance of the proposed model on tasks such as sentiment analysis from movie reviews, predicting business ratings from reviews and classifying news articles into topics. We find that the proposed approach matches or outperforms a series of strong baselines and is more parameter efficient than comparable multi-head approaches. We also perform qualitative analyses to verify that the proposed approach is interpretable and captures context-dependent word importance.
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.
UNKs Everywhere: Adapting Multilingual Language Models to New Scripts
Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model's embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT's and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.
Checking the Sufficiently Scattered Condition using a Global Non-Convex Optimization Software
The sufficiently scattered condition (SSC) is a key condition in the study of identifiability of various matrix factorization problems, including nonnegative, minimum-volume, symmetric, simplex-structured, and polytopic matrix factorizations. The SSC allows one to guarantee that the computed matrix factorization is unique/identifiable, up to trivial ambiguities. However, this condition is NP-hard to check in general. In this paper, we show that it can however be checked in a reasonable amount of time in realistic scenarios, when the factorization rank is not too large. This is achieved by formulating the problem as a non-convex quadratic optimization problem over a bounded set. We use the global non-convex optimization software Gurobi, and showcase the usefulness of this code on synthetic data sets and on real-world hyperspectral images.
Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.
Structured Sparse Method for Hyperspectral Unmixing
Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method from the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly.
Linear-Time Graph Neural Networks for Scalable Recommendations
In an era of information explosion, recommender systems are vital tools to deliver personalized recommendations for users. The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions. Due to their strong expressive power of capturing high-order connectivities in user-item interaction data, recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems. Nonetheless, classic Matrix Factorization (MF) and Deep Neural Network (DNN) approaches still play an important role in real-world large-scale recommender systems due to their scalability advantages. Despite the existence of GNN-acceleration solutions, it remains an open question whether GNN-based recommender systems can scale as efficiently as classic MF and DNN methods. In this paper, we propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches while maintaining GNNs' powerful expressiveness for superior prediction accuracy. Extensive experiments and ablation studies are presented to validate the effectiveness and scalability of the proposed algorithm. Our implementation based on PyTorch is available.
ResFields: Residual Neural Fields for Spatiotemporal Signals
Neural fields, a category of neural networks trained to represent high-frequency signals, have gained significant attention in recent years due to their impressive performance in modeling complex 3D data, especially large neural signed distance (SDFs) or radiance fields (NeRFs) via a single multi-layer perceptron (MLP). However, despite the power and simplicity of representing signals with an MLP, these methods still face challenges when modeling large and complex temporal signals due to the limited capacity of MLPs. In this paper, we propose an effective approach to address this limitation by incorporating temporal residual layers into neural fields, dubbed ResFields, a novel class of networks specifically designed to effectively represent complex temporal signals. We conduct a comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters and enhance generalization capabilities. Importantly, our formulation seamlessly integrates with existing techniques and consistently improves results across various challenging tasks: 2D video approximation, dynamic shape modeling via temporal SDFs, and dynamic NeRF reconstruction. Lastly, we demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse sensory inputs of a lightweight capture system.
OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining
Pretraining multilingual language models from scratch requires considerable computational resources and substantial training data. Therefore, a more efficient method is to adapt existing pretrained language models (PLMs) to new languages via vocabulary extension and continued pretraining. However, this method usually randomly initializes the embeddings of new subwords and introduces substantially more embedding parameters to the language model, thus weakening the efficiency. To address these issues, we propose a novel framework: One For All (\textsc{Ofa}), which wisely initializes the embeddings of unseen subwords from target languages and thus can adapt a PLM to multiple languages efficiently and effectively. Ofa takes advantage of external well-aligned multilingual word embeddings and injects the alignment knowledge into the new embeddings. In addition, Ofa applies matrix factorization and replaces the cumbersome embeddings with two lower-dimensional matrices, which significantly reduces the number of parameters while not sacrificing the performance. Through extensive experiments, we show models initialized by Ofa are efficient and outperform several baselines. Ofa not only accelerates the convergence of continued pretraining, which is friendly to a limited computation budget, but also improves the zero-shot crosslingual transfer on a wide range of downstream tasks. We make our code and models publicly available.
CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts
Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top K routed experts in an ``addition'' manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a ``multiplication'' manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness.
Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
This paper proposes a cold start recommendation model that integrates contrastive learning, aiming to solve the problem of performance degradation of recommendation systems in cold start scenarios due to the scarcity of user and item interaction data. The model dynamically adjusts the weights of key features through an adaptive feature selection module and effectively integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism, thereby improving recommendation performance. In addition, the model introduces a contrastive learning mechanism to enhance the robustness and generalization ability of feature representation by constructing positive and negative sample pairs. Experiments are conducted on the MovieLens-1M dataset. The results show that the proposed model significantly outperforms mainstream recommendation methods such as Matrix Factorization, LightGBM, DeepFM, and AutoRec in terms of HR, NDCG, MRR, and Recall, especially in cold start scenarios. Ablation experiments further verify the key role of each module in improving model performance, and the learning rate sensitivity analysis shows that a moderate learning rate is crucial to the optimization effect of the model. This study not only provides a new solution to the cold start problem but also provides an important reference for the application of contrastive learning in recommendation systems. In the future, this model is expected to play a role in a wider range of scenarios, such as real-time recommendation and cross-domain recommendation.
LoTR: Low Tensor Rank Weight Adaptation
In this paper we generalize and extend an idea of low-rank adaptation (LoRA) of large language models (LLMs) based on Transformer architecture. Widely used LoRA-like methods of fine-tuning LLMs are based on matrix factorization of gradient update. We introduce LoTR, a novel approach for parameter-efficient fine-tuning of LLMs which represents a gradient update to parameters in a form of tensor decomposition. Low-rank adapter for each layer is constructed as a product of three matrices, and tensor structure arises from sharing left and right multipliers of this product among layers. Simultaneous compression of a sequence of layers with low-rank tensor representation allows LoTR to archive even better parameter efficiency then LoRA especially for deep models. Moreover, the core tensor does not depend on original weight dimension and can be made arbitrary small, which allows for extremely cheap and fast downstream fine-tuning.
On the Generalization of Multi-modal Contrastive Learning
Multi-modal contrastive learning (MMCL) has recently garnered considerable interest due to its superior performance in visual tasks, achieved by embedding multi-modal data, such as visual-language pairs. However, there still lack theoretical understandings of how MMCL extracts useful visual representation from multi-modal pairs, and particularly, how MMCL outperforms previous approaches like self-supervised contrastive learning (SSCL). In this paper, by drawing an intrinsic connection between MMCL and asymmetric matrix factorization, we establish the first generalization guarantees of MMCL for visual downstream tasks. Based on this framework, we further unify MMCL and SSCL by showing that MMCL implicitly performs SSCL with (pseudo) positive pairs induced by text pairs. Through this unified perspective, we characterize the advantage of MMCL by showing that text pairs induce more semantically consistent and diverse positive pairs, which, according to our analysis, provably benefit downstream generalization. Inspired by this finding, we propose CLIP-guided resampling methods to significantly improve the downstream performance of SSCL on ImageNet by leveraging multi-modal information. Code is available at https://github.com/PKU-ML/CLIP-Help-SimCLR.
Invertible Concept-based Explanations for CNN Models with Non-negative Concept Activation Vectors
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form. This deficiency remains a key challenge when applying CNNs in important domains. Recent work on explanations through feature importance of approximate linear models has moved from input-level features (pixels or segments) to features from mid-layer feature maps in the form of concept activation vectors (CAVs). CAVs contain concept-level information and could be learned via clustering. In this work, we rethink the ACE algorithm of Ghorbani et~al., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings. Based on the requirements of fidelity (approximate models to target models) and interpretability (being meaningful to people), we design measurements and evaluate a range of matrix factorization methods with our framework. We find that non-negative concept activation vectors (NCAVs) from non-negative matrix factorization provide superior performance in interpretability and fidelity based on computational and human subject experiments. Our framework provides both local and global concept-level explanations for pre-trained CNN models.
STAT: Shrinking Transformers After Training
We present STAT: a simple algorithm to prune transformer models without any fine-tuning. STAT eliminates both attention heads and neurons from the network, while preserving accuracy by calculating a correction to the weights of the next layer. Each layer block in the network is compressed using a series of principled matrix factorizations that preserve the network structure. Our entire algorithm takes minutes to compress BERT, and less than three hours to compress models with 7B parameters using a single GPU. Using only several hundred data examples, STAT preserves the output of the network and improves upon existing gradient-free pruning methods. It is even competitive with methods that include significant fine-tuning. We demonstrate our method on both encoder and decoder architectures, including BERT, DistilBERT, and Llama-2 using benchmarks such as GLUE, Squad, WikiText2.
Mukai duality via roofs of projective bundles
We investigate a construction providing pairs of Calabi-Yau varieties described as zero loci of pushforwards of a hyperplane section on a roof as described by Kanemitsu. We discuss the implications of such construction at the level of Hodge equivalence, derived equivalence and mathbb L-equivalence. For the case of K3 surfaces, we provide alternative interpretations for the Fourier-Mukai duality in the family of K3 surfaces of degree 12 of Mukai. In all these constructions the derived equivalence lifts to an equivalence of matrix factorizations categories.
AdaLomo: Low-memory Optimization with Adaptive Learning Rate
Large language models have achieved remarkable success, but their extensive parameter size necessitates substantial memory for training, thereby setting a high threshold. While the recently proposed low-memory optimization (LOMO) reduces memory footprint, its optimization technique, akin to stochastic gradient descent, is sensitive to hyper-parameters and exhibits suboptimal convergence, failing to match the performance of the prevailing optimizer for large language models, AdamW. Through empirical analysis of the Adam optimizer, we found that, compared to momentum, the adaptive learning rate is more critical for bridging the gap. Building on this insight, we introduce the low-memory optimization with adaptive learning rate (AdaLomo), which offers an adaptive learning rate for each parameter. To maintain memory efficiency, we employ non-negative matrix factorization for the second-order moment estimation in the optimizer state. Additionally, we suggest the use of a grouped update normalization to stabilize convergence. Our experiments with instruction-tuning and further pre-training demonstrate that AdaLomo achieves results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
Out-of-Town Recommendation with Travel Intention Modeling
Out-of-town recommendation is designed for those users who leave their home-town areas and visit the areas they have never been to before. It is challenging to recommend Point-of-Interests (POIs) for out-of-town users since the out-of-town check-in behavior is determined by not only the user's home-town preference but also the user's travel intention. Besides, the user's travel intentions are complex and dynamic, which leads to big difficulties in understanding such intentions precisely. In this paper, we propose a TRAvel-INtention-aware Out-of-town Recommendation framework, named TRAINOR. The proposed TRAINOR framework distinguishes itself from existing out-of-town recommenders in three aspects. First, graph neural networks are explored to represent users' home-town check-in preference and geographical constraints in out-of-town check-in behaviors. Second, a user-specific travel intention is formulated as an aggregation combining home-town preference and generic travel intention together, where the generic travel intention is regarded as a mixture of inherent intentions that can be learned by Neural Topic Model (NTM). Third, a non-linear mapping function, as well as a matrix factorization method, are employed to transfer users' home-town preference and estimate out-of-town POI's representation, respectively. Extensive experiments on real-world data sets validate the effectiveness of the TRAINOR framework. Moreover, the learned travel intention can deliver meaningful explanations for understanding a user's travel purposes.
Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations
Recommender models excel at providing domain-specific item recommendations by leveraging extensive user behavior data. Despite their ability to act as lightweight domain experts, they struggle to perform versatile tasks such as providing explanations and engaging in conversations. On the other hand, large language models (LLMs) represent a significant step towards artificial general intelligence, showcasing remarkable capabilities in instruction comprehension, commonsense reasoning, and human interaction. However, LLMs lack the knowledge of domain-specific item catalogs and behavioral patterns, particularly in areas that diverge from general world knowledge, such as online e-commerce. Finetuning LLMs for each domain is neither economic nor efficient. In this paper, we bridge the gap between recommender models and LLMs, combining their respective strengths to create a versatile and interactive recommender system. We introduce an efficient framework called InteRecAgent, which employs LLMs as the brain and recommender models as tools. We first outline a minimal set of essential tools required to transform LLMs into InteRecAgent. We then propose an efficient workflow within InteRecAgent for task execution, incorporating key components such as a memory bus, dynamic demonstration-augmented task planning, and reflection. InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface through the integration of LLMs. Experimental results on several public datasets show that InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
BEYONDWORDS is All You Need: Agentic Generative AI based Social Media Themes Extractor
Thematic analysis of social media posts provides a major understanding of public discourse, yet traditional methods often struggle to capture the complexity and nuance of unstructured, large-scale text data. This study introduces a novel methodology for thematic analysis that integrates tweet embeddings from pre-trained language models, dimensionality reduction using and matrix factorization, and generative AI to identify and refine latent themes. Our approach clusters compressed tweet representations and employs generative AI to extract and articulate themes through an agentic Chain of Thought (CoT) prompting, with a secondary LLM for quality assurance. This methodology is applied to tweets from the autistic community, a group that increasingly uses social media to discuss their experiences and challenges. By automating the thematic extraction process, the aim is to uncover key insights while maintaining the richness of the original discourse. This autism case study demonstrates the utility of the proposed approach in improving thematic analysis of social media data, offering a scalable and adaptable framework that can be applied to diverse contexts. The results highlight the potential of combining machine learning and Generative AI to enhance the depth and accuracy of theme identification in online communities.
Non-negative Contrastive Learning
Deep representations have shown promising performance when transferred to downstream tasks in a black-box manner. Yet, their inherent lack of interpretability remains a significant challenge, as these features are often opaque to human understanding. In this paper, we propose Non-negative Contrastive Learning (NCL), a renaissance of Non-negative Matrix Factorization (NMF) aimed at deriving interpretable features. The power of NCL lies in its enforcement of non-negativity constraints on features, reminiscent of NMF's capability to extract features that align closely with sample clusters. NCL not only aligns mathematically well with an NMF objective but also preserves NMF's interpretability attributes, resulting in a more sparse and disentangled representation compared to standard contrastive learning (CL). Theoretically, we establish guarantees on the identifiability and downstream generalization of NCL. Empirically, we show that these advantages enable NCL to outperform CL significantly on feature disentanglement, feature selection, as well as downstream classification tasks. At last, we show that NCL can be easily extended to other learning scenarios and benefit supervised learning as well. Code is available at https://github.com/PKU-ML/non_neg.
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Differentially private learning algorithms inject noise into the learning process. While the most common private learning algorithm, DP-SGD, adds independent Gaussian noise in each iteration, recent work on matrix factorization mechanisms has shown empirically that introducing correlations in the noise can greatly improve their utility. We characterize the asymptotic learning utility for any choice of the correlation function, giving precise analytical bounds for linear regression and as the solution to a convex program for general convex functions. We show, using these bounds, how correlated noise provably improves upon vanilla DP-SGD as a function of problem parameters such as the effective dimension and condition number. Moreover, our analytical expression for the near-optimal correlation function circumvents the cubic complexity of the semi-definite program used to optimize the noise correlation matrix in previous work. We validate our theory with experiments on private deep learning. Our work matches or outperforms prior work while being efficient both in terms of compute and memory.
TASTY: A Transformer based Approach to Space and Time complexity
Code based Language Models (LMs) have shown very promising results in the field of software engineering with applications such as code refinement, code completion and generation. However, the task of time and space complexity classification from code has not been extensively explored due to a lack of datasets, with prior endeavors being limited to Java. In this project, we aim to address these gaps by creating a labelled dataset of code snippets spanning multiple languages (Python and C++ datasets currently, with C, C#, and JavaScript datasets being released shortly). We find that existing time complexity calculation libraries and tools only apply to a limited number of use-cases. The lack of a well-defined rule based system motivates the application of several recently proposed code-based LMs. We demonstrate the effectiveness of dead code elimination and increasing the maximum sequence length of LMs. In addition to time complexity, we propose to use LMs to find space complexities from code, and to the best of our knowledge, this is the first attempt to do so. Furthermore, we introduce a novel code comprehension task, called cross-language transfer, where we fine-tune the LM on one language and run inference on another. Finally, we visualize the activation of the attention fed classification head of our LMs using Non-negative Matrix Factorization (NMF) to interpret our results.
Zero-Shot Recommendation as Language Modeling
Recommendation is the task of ranking items (e.g. movies or products) according to individual user needs. Current systems rely on collaborative filtering and content-based techniques, which both require structured training data. We propose a framework for recommendation with off-the-shelf pretrained language models (LM) that only used unstructured text corpora as training data. If a user u liked Matrix and Inception, we construct a textual prompt, e.g. "Movies like Matrix, Inception, {<m{>}"} to estimate the affinity between u and m with LM likelihood. We motivate our idea with a corpus analysis, evaluate several prompt structures, and we compare LM-based recommendation with standard matrix factorization trained on different data regimes. The code for our experiments is publicly available (https://colab.research.google.com/drive/1f1mlZ-FGaLGdo5rPzxf3vemKllbh2esT?usp=sharing).
Sampler Design for Implicit Feedback Data by Noisy-label Robust Learning
Implicit feedback data is extensively explored in recommendation as it is easy to collect and generally applicable. However, predicting users' preference on implicit feedback data is a challenging task since we can only observe positive (voted) samples and unvoted samples. It is difficult to distinguish between the negative samples and unlabeled positive samples from the unvoted ones. Existing works, such as Bayesian Personalized Ranking (BPR), sample unvoted items as negative samples uniformly, therefore suffer from a critical noisy-label issue. To address this gap, we design an adaptive sampler based on noisy-label robust learning for implicit feedback data. To formulate the issue, we first introduce Bayesian Point-wise Optimization (BPO) to learn a model, e.g., Matrix Factorization (MF), by maximum likelihood estimation. We predict users' preferences with the model and learn it by maximizing likelihood of observed data labels, i.e., a user prefers her positive samples and has no interests in her unvoted samples. However, in reality, a user may have interests in some of her unvoted samples, which are indeed positive samples mislabeled as negative ones. We then consider the risk of these noisy labels, and propose a Noisy-label Robust BPO (NBPO). NBPO also maximizes the observation likelihood while connects users' preference and observed labels by the likelihood of label flipping based on the Bayes' theorem. In NBPO, a user prefers her true positive samples and shows no interests in her true negative samples, hence the optimization quality is dramatically improved. Extensive experiments on two public real-world datasets show the significant improvement of our proposed optimization methods.
Deep Representation Learning for Clustering of Health Tweets
Twitter has been a prominent social media platform for mining population-level health data and accurate clustering of health-related tweets into topics is important for extracting relevant health insights. In this work, we propose deep convolutional autoencoders for learning compact representations of health-related tweets, further to be employed in clustering. We compare our method to several conventional tweet representation methods including bag-of-words, term frequency-inverse document frequency, Latent Dirichlet Allocation and Non-negative Matrix Factorization with 3 different clustering algorithms. Our results show that the clustering performance using proposed representation learning scheme significantly outperforms that of conventional methods for all experiments of different number of clusters. In addition, we propose a constraint on the learned representations during the neural network training in order to further enhance the clustering performance. All in all, this study introduces utilization of deep neural network-based architectures, i.e., deep convolutional autoencoders, for learning informative representations of health-related tweets.
Learning computationally efficient dictionaries and their implementation as fast transforms
Dictionary learning is a branch of signal processing and machine learning that aims at finding a frame (called dictionary) in which some training data admits a sparse representation. The sparser the representation, the better the dictionary. The resulting dictionary is in general a dense matrix, and its manipulation can be computationally costly both at the learning stage and later in the usage of this dictionary, for tasks such as sparse coding. Dictionary learning is thus limited to relatively small-scale problems. In this paper, inspired by usual fast transforms, we consider a general dictionary structure that allows cheaper manipulation, and propose an algorithm to learn such dictionaries --and their fast implementation-- over training data. The approach is demonstrated experimentally with the factorization of the Hadamard matrix and with synthetic dictionary learning experiments.
Robust low-rank training via approximate orthonormal constraints
With the growth of model and data sizes, a broad effort has been made to design pruning techniques that reduce the resource demand of deep learning pipelines, while retaining model performance. In order to reduce both inference and training costs, a prominent line of work uses low-rank matrix factorizations to represent the network weights. Although able to retain accuracy, we observe that low-rank methods tend to compromise model robustness against adversarial perturbations. By modeling robustness in terms of the condition number of the neural network, we argue that this loss of robustness is due to the exploding singular values of the low-rank weight matrices. Thus, we introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold while simultaneously enforcing approximate orthonormal constraints. The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy. This is shown by extensive numerical evidence and by our main approximation theorem that shows the computed robust low-rank network well-approximates the ideal full model, provided a highly performing low-rank sub-network exists.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Unsupervised Learning under Latent Label Shift
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
Matrix Calculus (for Machine Learning and Beyond)
This course, intended for undergraduates familiar with elementary calculus and linear algebra, introduces the extension of differential calculus to functions on more general vector spaces, such as functions that take as input a matrix and return a matrix inverse or factorization, derivatives of ODE solutions, and even stochastic derivatives of random functions. It emphasizes practical computational applications, such as large-scale optimization and machine learning, where derivatives must be re-imagined in order to be propagated through complicated calculations. The class also discusses efficiency concerns leading to "adjoint" or "reverse-mode" differentiation (a.k.a. "backpropagation"), and gives a gentle introduction to modern automatic differentiation (AD) techniques.
Factorization Vision Transformer: Modeling Long Range Dependency with Local Window Cost
Transformers have astounding representational power but typically consume considerable computation which is quadratic with image resolution. The prevailing Swin transformer reduces computational costs through a local window strategy. However, this strategy inevitably causes two drawbacks: (1) the local window-based self-attention hinders global dependency modeling capability; (2) recent studies point out that local windows impair robustness. To overcome these challenges, we pursue a preferable trade-off between computational cost and performance. Accordingly, we propose a novel factorization self-attention mechanism (FaSA) that enjoys both the advantages of local window cost and long-range dependency modeling capability. By factorizing the conventional attention matrix into sparse sub-attention matrices, FaSA captures long-range dependencies while aggregating mixed-grained information at a computational cost equivalent to the local window-based self-attention. Leveraging FaSA, we present the factorization vision transformer (FaViT) with a hierarchical structure. FaViT achieves high performance and robustness, with linear computational complexity concerning input image spatial resolution. Extensive experiments have shown FaViT's advanced performance in classification and downstream tasks. Furthermore, it also exhibits strong model robustness to corrupted and biased data and hence demonstrates benefits in favor of practical applications. In comparison to the baseline model Swin-T, our FaViT-B2 significantly improves classification accuracy by 1% and robustness by 7%, while reducing model parameters by 14%. Our code will soon be publicly available at https://github.com/q2479036243/FaViT.
A theory of meta-factorization
We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nystr\"{o}m method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them.
One-sided Matrix Completion from Two Observations Per Row
Given only a few observed entries from a low-rank matrix X, matrix completion is the problem of imputing the missing entries, and it formalizes a wide range of real-world settings that involve estimating missing data. However, when there are too few observed entries to complete the matrix, what other aspects of the underlying matrix can be reliably recovered? We study one such problem setting, that of "one-sided" matrix completion, where our goal is to recover the right singular vectors of X, even in the regime where recovering the left singular vectors is impossible, which arises when there are more rows than columns and very few observations. We propose a natural algorithm that involves imputing the missing values of the matrix X^TX and show that even with only two observations per row in X, we can provably recover X^TX as long as we have at least Omega(r^2 d log d) rows, where r is the rank and d is the number of columns. We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing. In these settings, our algorithm substantially outperforms standard matrix completion and a variety of direct factorization methods.
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
DSFormer: Effective Compression of Text-Transformers by Dense-Sparse Weight Factorization
With the tremendous success of large transformer models in natural language understanding, down-sizing them for cost-effective deployments has become critical. Recent studies have explored the low-rank weight factorization techniques which are efficient to train, and apply out-of-the-box to any transformer architecture. Unfortunately, the low-rank assumption tends to be over-restrictive and hinders the expressiveness of the compressed model. This paper proposes, DSFormer, a simple alternative factorization scheme which expresses a target weight matrix as the product of a small dense and a semi-structured sparse matrix. The resulting approximation is more faithful to the weight distribution in transformers and therefore achieves a stronger efficiency-accuracy trade-off. Another concern with existing factorizers is their dependence on a task-unaware initialization step which degrades the accuracy of the resulting model. DSFormer addresses this issue through a novel Straight-Through Factorizer (STF) algorithm that jointly learns all the weight factorizations to directly maximize the final task accuracy. Extensive experiments on multiple natural language understanding benchmarks demonstrate that DSFormer obtains up to 40% better compression than the state-of-the-art low-rank factorizers, leading semi-structured sparsity baselines and popular knowledge distillation approaches. Our approach is also orthogonal to mainstream compressors and offers up to 50% additional compression when added to popular distilled, layer-shared and quantized transformers. We empirically evaluate the benefits of STF over conventional optimization practices.
Re-ReND: Real-time Rendering of NeRFs across Devices
This paper proposes a novel approach for rendering a pre-trained Neural Radiance Field (NeRF) in real-time on resource-constrained devices. We introduce Re-ReND, a method enabling Real-time Rendering of NeRFs across Devices. Re-ReND is designed to achieve real-time performance by converting the NeRF into a representation that can be efficiently processed by standard graphics pipelines. The proposed method distills the NeRF by extracting the learned density into a mesh, while the learned color information is factorized into a set of matrices that represent the scene's light field. Factorization implies the field is queried via inexpensive MLP-free matrix multiplications, while using a light field allows rendering a pixel by querying the field a single time-as opposed to hundreds of queries when employing a radiance field. Since the proposed representation can be implemented using a fragment shader, it can be directly integrated with standard rasterization frameworks. Our flexible implementation can render a NeRF in real-time with low memory requirements and on a wide range of resource-constrained devices, including mobiles and AR/VR headsets. Notably, we find that Re-ReND can achieve over a 2.6-fold increase in rendering speed versus the state-of-the-art without perceptible losses in quality.
Swivel: Improving Embeddings by Noticing What's Missing
We present Submatrix-wise Vector Embedding Learner (Swivel), a method for generating low-dimensional feature embeddings from a feature co-occurrence matrix. Swivel performs approximate factorization of the point-wise mutual information matrix via stochastic gradient descent. It uses a piecewise loss with special handling for unobserved co-occurrences, and thus makes use of all the information in the matrix. While this requires computation proportional to the size of the entire matrix, we make use of vectorized multiplication to process thousands of rows and columns at once to compute millions of predicted values. Furthermore, we partition the matrix into shards in order to parallelize the computation across many nodes. This approach results in more accurate embeddings than can be achieved with methods that consider only observed co-occurrences, and can scale to much larger corpora than can be handled with sampling methods.
Generating Long Sequences with Sparse Transformers
Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(n n). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Our method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.
Differentiable Neural Input Search for Recommender Systems
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
Performance Gaps in Multi-view Clustering under the Nested Matrix-Tensor Model
We study the estimation of a planted signal hidden in a recently introduced nested matrix-tensor model, which is an extension of the classical spiked rank-one tensor model, motivated by multi-view clustering. Prior work has theoretically examined the performance of a tensor-based approach, which relies on finding a best rank-one approximation, a problem known to be computationally hard. A tractable alternative approach consists in computing instead the best rank-one (matrix) approximation of an unfolding of the observed tensor data, but its performance was hitherto unknown. We quantify here the performance gap between these two approaches, in particular by deriving the precise algorithmic threshold of the unfolding approach and demonstrating that it exhibits a BBP-type transition behavior. This work is therefore in line with recent contributions which deepen our understanding of why tensor-based methods surpass matrix-based methods in handling structured tensor data.
Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time
Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.
Deep Feature Factorization For Concept Discovery
We propose Deep Feature Factorization (DFF), a method capable of localizing similar semantic concepts within an image or a set of images. We use DFF to gain insight into a deep convolutional neural network's learned features, where we detect hierarchical cluster structures in feature space. This is visualized as heat maps, which highlight semantically matching regions across a set of images, revealing what the network `perceives' as similar. DFF can also be used to perform co-segmentation and co-localization, and we report state-of-the-art results on these tasks.
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
This paper rigorously shows how over-parameterization changes the convergence behaviors of gradient descent (GD) for the matrix sensing problem, where the goal is to recover an unknown low-rank ground-truth matrix from near-isotropic linear measurements. First, we consider the symmetric setting with the symmetric parameterization where M^* in R^{n times n} is a positive semi-definite unknown matrix of rank r ll n, and one uses a symmetric parameterization XX^top to learn M^*. Here X in R^{n times k} with k > r is the factor matrix. We give a novel Omega (1/T^2) lower bound of randomly initialized GD for the over-parameterized case (k >r) where T is the number of iterations. This is in stark contrast to the exact-parameterization scenario (k=r) where the convergence rate is exp (-Omega (T)). Next, we study asymmetric setting where M^* in R^{n_1 times n_2} is the unknown matrix of rank r ll min{n_1,n_2}, and one uses an asymmetric parameterization FG^top to learn M^* where F in R^{n_1 times k} and G in R^{n_2 times k}. Building on prior work, we give a global exact convergence result of randomly initialized GD for the exact-parameterization case (k=r) with an exp (-Omega(T)) rate. Furthermore, we give the first global exact convergence result for the over-parameterization case (k>r) with an exp(-Omega(alpha^2 T)) rate where alpha is the initialization scale. This linear convergence result in the over-parameterization case is especially significant because one can apply the asymmetric parameterization to the symmetric setting to speed up from Omega (1/T^2) to linear convergence. On the other hand, we propose a novel method that only modifies one step of GD and obtains a convergence rate independent of alpha, recovering the rate in the exact-parameterization case.
Fast and Accurate Network Embeddings via Very Sparse Random Projection
We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at https://github.com/qslim/PDF.
Neural Network Pruning as Spectrum Preserving Process
Neural networks have achieved remarkable performance in various application domains. Nevertheless, a large number of weights in pre-trained deep neural networks prohibit them from being deployed on smartphones and embedded systems. It is highly desirable to obtain lightweight versions of neural networks for inference in edge devices. Many cost-effective approaches were proposed to prune dense and convolutional layers that are common in deep neural networks and dominant in the parameter space. However, a unified theoretical foundation for the problem mostly is missing. In this paper, we identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers and argue that weight pruning is essentially a matrix sparsification process to preserve the spectrum. Based on the analysis, we also propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result. We carefully design and conduct experiments to support our arguments. Hence we provide a consolidated viewpoint for neural network pruning and enhance the interpretability of deep neural networks by identifying and preserving the critical neural weights.
Exploiting locality in high-dimensional factorial hidden Markov models
We propose algorithms for approximate filtering and smoothing in high-dimensional Factorial hidden Markov models. The approximation involves discarding, in a principled way, likelihood factors according to a notion of locality in a factor graph associated with the emission distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to be avoided. We prove that the approximation accuracy, measured in a local total variation norm, is "dimension-free" in the sense that as the overall dimension of the model increases the error bounds we derive do not necessarily degrade. A key step in the analysis is to quantify the error introduced by localizing the likelihood function in a Bayes' rule update. The factorial structure of the likelihood function which we exploit arises naturally when data have known spatial or network structure. We demonstrate the new algorithms on synthetic examples and a London Underground passenger flow problem, where the factor graph is effectively given by the train network.
Minimizing FLOPs to Learn Efficient Sparse Representations
Deep representation learning has become one of the most widely adopted approaches for visual search, recommendation, and identification. Retrieval of such representations from a large database is however computationally challenging. Approximate methods based on learning compact representations, have been widely explored for this problem, such as locality sensitive hashing, product quantization, and PCA. In this work, in contrast to learning compact representations, we propose to learn high dimensional and sparse representations that have similar representational capacity as dense embeddings while being more efficient due to sparse matrix multiplication operations which can be much faster than dense multiplication. Following the key insight that the number of operations decreases quadratically with the sparsity of embeddings provided the non-zero entries are distributed uniformly across dimensions, we propose a novel approach to learn such distributed sparse embeddings via the use of a carefully constructed regularization function that directly minimizes a continuous relaxation of the number of floating-point operations (FLOPs) incurred during retrieval. Our experiments show that our approach is competitive to the other baselines and yields a similar or better speed-vs-accuracy tradeoff on practical datasets.
Equivariant Matrix Function Neural Networks
Graph Neural Networks (GNNs), especially message-passing neural networks (MPNNs), have emerged as powerful architectures for learning on graphs in diverse applications. However, MPNNs face challenges when modeling non-local interactions in graphs such as large conjugated molecules, and social networks due to oversmoothing and oversquashing. Although Spectral GNNs and traditional neural networks such as recurrent neural networks and transformers mitigate these challenges, they often lack generalizability, or fail to capture detailed structural relationships or symmetries in the data. To address these concerns, we introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions. Employing resolvent expansions offers a straightforward implementation and the potential for linear scaling with system size. The MFN architecture achieves stateof-the-art performance in standard graph benchmarks, such as the ZINC and TU datasets, and is able to capture intricate non-local interactions in quantum systems, paving the way to new state-of-the-art force fields.
Structure Learning of Latent Factors via Clique Search on Correlation Thresholded Graphs
Despite the widespread application of latent factor analysis, existing methods suffer from the following weaknesses: requiring the number of factors to be known, lack of theoretical guarantees for learning the model structure, and nonidentifiability of the parameters due to rotation invariance properties of the likelihood. We address these concerns by proposing a fast correlation thresholding (CT) algorithm that simultaneously learns the number of latent factors and a rotationally identifiable model structure. Our novel approach translates this structure learning problem into the search for so-called independent maximal cliques in a thresholded correlation graph that can be easily constructed from the observed data. Our clique analysis technique scales well up to thousands of variables, while competing methods are not applicable in a reasonable amount of running time. We establish a finite-sample error bound and high-dimensional consistency for the structure learning of our method. Through a series of simulation studies and a real data example, we show that the CT algorithm is an accurate method for learning the structure of factor analysis models and is robust to violations of its assumptions.
Adaptive Estimation of Graphical Models under Total Positivity
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices lauritzen2019maximum,slawski2015estimation and even one observation for diagonally dominant M-matrices truell2021maximum. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ell_1-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Kolmogorov-Arnold Fourier Networks
Although Kolmogorov-Arnold based interpretable networks (KAN) have strong theoretical expressiveness, they face significant parameter explosion and high-frequency feature capture challenges in high-dimensional tasks. To address this issue, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which effectively integrates trainable Random Fourier Features (RFF) and a novel hybrid GELU-Fourier activation mechanism to balance parameter efficiency and spectral representation capabilities. Our key technical contributions include: (1) merging KAN's dual-matrix structure through matrix association properties to substantially reduce parameters; (2) introducing learnable RFF initialization strategies to eliminate spectral distortion in high-dimensional approximation tasks; (3) implementing an adaptive hybrid activation function that progressively enhances frequency representation during the training process. Comprehensive experiments demonstrate the superiority of our KAF across various domains including vision, NLP, audio processing, and differential equation-solving tasks, effectively combining theoretical interpretability with practical utility and computational efficiency.
Matrix Estimation for Individual Fairness
In recent years, multiple notions of algorithmic fairness have arisen. One such notion is individual fairness (IF), which requires that individuals who are similar receive similar treatment. In parallel, matrix estimation (ME) has emerged as a natural paradigm for handling noisy data with missing values. In this work, we connect the two concepts. We show that pre-processing data using ME can improve an algorithm's IF without sacrificing performance. Specifically, we show that using a popular ME method known as singular value thresholding (SVT) to pre-process the data provides a strong IF guarantee under appropriate conditions. We then show that, under analogous conditions, SVT pre-processing also yields estimates that are consistent and approximately minimax optimal. As such, the ME pre-processing step does not, under the stated conditions, increase the prediction error of the base algorithm, i.e., does not impose a fairness-performance trade-off. We verify these results on synthetic and real data.
Unified Low-rank Compression Framework for Click-through Rate Prediction
Deep Click-Through Rate (CTR) prediction models play an important role in modern industrial recommendation scenarios. However, high memory overhead and computational costs limit their deployment in resource-constrained environments. Low-rank approximation is an effective method for computer vision and natural language processing models, but its application in compressing CTR prediction models has been less explored. Due to the limited memory and computing resources, compression of CTR prediction models often confronts three fundamental challenges, i.e., (1). How to reduce the model sizes to adapt to edge devices? (2). How to speed up CTR prediction model inference? (3). How to retain the capabilities of original models after compression? Previous low-rank compression research mostly uses tensor decomposition, which can achieve a high parameter compression ratio, but brings in AUC degradation and additional computing overhead. To address these challenges, we propose a unified low-rank decomposition framework for compressing CTR prediction models. We find that even with the most classic matrix decomposition SVD method, our framework can achieve better performance than the original model. To further improve the effectiveness of our framework, we locally compress the output features instead of compressing the model weights. Our unified low-rank compression framework can be applied to embedding tables and MLP layers in various CTR prediction models. Extensive experiments on two academic datasets and one real industrial benchmark demonstrate that, with 3-5x model size reduction, our compressed models can achieve both faster inference and higher AUC than the uncompressed original models. Our code is at https://github.com/yuhao318/Atomic_Feature_Mimicking.
Weight Conditioning for Smooth Optimization of Neural Networks
In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
Sheaf Neural Networks for Graph-based Recommender Systems
Recent progress in Graph Neural Networks has resulted in wide adoption by many applications, including recommendation systems. The reason for Graph Neural Networks' superiority over other approaches is that many problems in recommendation systems can be naturally modeled as graphs, where nodes can be either users or items and edges represent preference relationships. In current Graph Neural Network approaches, nodes are represented with a static vector learned at training time. This static vector might only be suitable to capture some of the nuances of users or items they define. To overcome this limitation, we propose using a recently proposed model inspired by category theory: Sheaf Neural Networks. Sheaf Neural Networks, and its connected Laplacian, can address the previous problem by associating every node (and edge) with a vector space instead than a single vector. The vector space representation is richer and allows picking the proper representation at inference time. This approach can be generalized for different related tasks on graphs and achieves state-of-the-art performance in terms of F1-Score@N in collaborative filtering and Hits@20 in link prediction. For collaborative filtering, the approach is evaluated on the MovieLens 100K with a 5.1% improvement, on MovieLens 1M with a 5.4% improvement and on Book-Crossing with a 2.8% improvement, while for link prediction on the ogbl-ddi dataset with a 1.6% refinement with respect to the respective baselines.
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them are significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. This allows us to provide approximation, stability, and descent guarantees. Moreover, our method automatically and dynamically adapts the ranks during training to achieve the desired approximation accuracy. The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
A Multilevel Monte Carlo Estimator for Matrix Multiplication
Inspired by the latest developments in multilevel Monte Carlo (MLMC) methods and randomised sketching for linear algebra problems we propose a MLMC estimator for real-time processing of matrix structured random data. Our algorithm is particularly effective in handling high-dimensional inner products and matrix multiplication, in applications of image analysis and large-scale supervised learning.
How to Index Item IDs for Recommendation Foundation Models
Recommendation foundation model utilizes large language models (LLM) for recommendation by converting recommendation tasks into natural language tasks. It enables generative recommendation which directly generates the item(s) to recommend rather than calculating a ranking score for each and every candidate item in traditional recommendation models, simplifying the recommendation pipeline from multi-stage filtering to single-stage filtering. To avoid generating excessively long text and hallucinated recommendation when deciding which item(s) to recommend, creating LLM-compatible item IDs to uniquely identify each item is essential for recommendation foundation models. In this study, we systematically examine the item indexing problem for recommendation foundation models, using P5 as an example of backbone model. To emphasize the importance of item indexing, we first discuss the issues of several trivial item indexing methods, such as independent indexing, title indexing, and random indexing. We then propose four simple yet effective solutions, including sequential indexing, collaborative indexing, semantic (content-based) indexing, and hybrid indexing. Our study highlights the significant influence of item indexing methods on the performance of LLM-based recommendation, and our results on real-world datasets validate the effectiveness of our proposed solutions. The research also demonstrates how recent advances on language modeling and traditional IR principles such as indexing can help each other for better learning and inference.
CURing Large Models: Compression via CUR Decomposition
Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges such as memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
Self-supervised Learning for Large-scale Item Recommendations
Large scale recommender models find most relevant items from huge catalogs, and they play a critical role in modern search and recommendation systems. To model the input space with large-vocab categorical features, a typical recommender model learns a joint embedding space through neural networks for both queries and items from user feedback data. However, with millions to billions of items in the corpus, users tend to provide feedback for a very small set of them, causing a power-law distribution. This makes the feedback data for long-tail items extremely sparse. Inspired by the recent success in self-supervised representation learning research in both computer vision and natural language understanding, we propose a multi-task self-supervised learning (SSL) framework for large-scale item recommendations. The framework is designed to tackle the label sparsity problem by learning better latent relationship of item features. Specifically, SSL improves item representation learning as well as serving as additional regularization to improve generalization. Furthermore, we propose a novel data augmentation method that utilizes feature correlations within the proposed framework. We evaluate our framework using two real-world datasets with 500M and 1B training examples respectively. Our results demonstrate the effectiveness of SSL regularization and show its superior performance over the state-of-the-art regularization techniques. We also have already launched the proposed techniques to a web-scale commercial app-to-app recommendation system, with significant improvements top-tier business metrics demonstrated in A/B experiments on live traffic. Our online results also verify our hypothesis that our framework indeed improves model performance even more on slices that lack supervision.
Train Once, Deploy Anywhere: Matryoshka Representation Learning for Multimodal Recommendation
Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods. We make our code and data publicly available at https://github.com/yueqirex/fMRLRec.
A Fast Incremental Gaussian Mixture Model
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of Obigl(NKD^3bigr) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this paper, we manage to reduce this complexity to Obigl(NKD^2bigr) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
FLoRA: Low-Rank Core Space for N-dimension
Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.
Embarrassingly Shallow Autoencoders for Sparse Data
Combining simple elements from the literature, we define a linear model that is geared toward sparse data, in particular implicit feedback data for recommender systems. We show that its training objective has a closed-form solution, and discuss the resulting conceptual insights. Surprisingly, this simple model achieves better ranking accuracy than various state-of-the-art collaborative-filtering approaches, including deep non-linear models, on most of the publicly available data-sets used in our experiments.
Multi-scale Attributed Node Embedding
We present network embedding algorithms that capture information about a node from the local distribution over node attributes around it, as observed over random walks following an approach similar to Skip-gram. Observations from neighborhoods of different sizes are either pooled (AE) or encoded distinctly in a multi-scale approach (MUSAE). Capturing attribute-neighborhood relationships over multiple scales is useful for a diverse range of applications, including latent feature identification across disconnected networks with similar attributes. We prove theoretically that matrices of node-feature pointwise mutual information are implicitly factorized by the embeddings. Experiments show that our algorithms are robust, computationally efficient and outperform comparable models on social networks and web graphs.
Kronecker Attention Networks
Attention operators have been applied on both 1-D data like texts and higher-order data such as images and videos. Use of attention operators on high-order data requires flattening of the spatial or spatial-temporal dimensions into a vector, which is assumed to follow a multivariate normal distribution. This not only incurs excessive requirements on computational resources, but also fails to preserve structures in data. In this work, we propose to avoid flattening by assuming the data follow matrix-variate normal distributions. Based on this new view, we develop Kronecker attention operators (KAOs) that operate on high-order tensor data directly. More importantly, the proposed KAOs lead to dramatic reductions in computational resources. Experimental results show that our methods reduce the amount of required computational resources by a factor of hundreds, with larger factors for higher-dimensional and higher-order data. Results also show that networks with KAOs outperform models without attention, while achieving competitive performance as those with original attention operators.
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations
Session-based recommender systems (SBRSs) have shown superior performance over conventional methods. However, they show limited scalability on large-scale industrial datasets since most models learn one embedding per item. This leads to a large memory requirement (of storing one vector per item) and poor performance on sparse sessions with cold-start or unpopular items. Using one public and one large industrial dataset, we experimentally show that state-of-the-art SBRSs have low performance on sparse sessions with sparse items. We propose M2TRec, a Metadata-aware Multi-task Transformer model for session-based recommendations. Our proposed method learns a transformation function from item metadata to embeddings, and is thus, item-ID free (i.e., does not need to learn one embedding per item). It integrates item metadata to learn shared representations of diverse item attributes. During inference, new or unpopular items will be assigned identical representations for the attributes they share with items previously observed during training, and thus will have similar representations with those items, enabling recommendations of even cold-start and sparse items. Additionally, M2TRec is trained in a multi-task setting to predict the next item in the session along with its primary category and subcategories. Our multi-task strategy makes the model converge faster and significantly improves the overall performance. Experimental results show significant performance gains using our proposed approach on sparse items on the two datasets.
A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens
Despite their increasing popularity and success in a variety of supervised learning problems, deep neural networks are extremely hard to interpret and debug: Given and already trained Deep Neural Net, and a set of test inputs, how can we gain insight into how those inputs interact with different layers of the neural network? Furthermore, can we characterize a given deep neural network based on it's observed behavior on different inputs? In this paper we propose a novel factorization based approach on understanding how different deep neural networks operate. In our preliminary results, we identify fascinating patterns that link the factorization rank (typically used as a measure of interestingness in unsupervised data analysis) with how well or poorly the deep network has been trained. Finally, our proposed approach can help provide visual insights on how high-level. interpretable patterns of the network's input behave inside the hidden layers of the deep network.
Hierarchical Multi-Interest Co-Network For Coarse-Grained Ranking
In this era of information explosion, a personalized recommendation system is convenient for users to get information they are interested in. To deal with billions of users and items, large-scale online recommendation services usually consist of three stages: candidate generation, coarse-grained ranking, and fine-grained ranking. The success of each stage depends on whether the model accurately captures the interests of users, which are usually hidden in users' behavior data. Previous research shows that users' interests are diverse, and one vector is not sufficient to capture users' different preferences. Therefore, many methods use multiple vectors to encode users' interests. However, there are two unsolved problems: (1) The similarity of different vectors in existing methods is too high, with too much redundant information. Consequently, the interests of users are not fully represented. (2) Existing methods model the long-term and short-term behaviors together, ignoring the differences between them. This paper proposes a Hierarchical Multi-Interest Co-Network (HCN) to capture users' diverse interests in the coarse-grained ranking stage. Specifically, we design a hierarchical multi-interest extraction layer to update users' diverse interest centers iteratively. The multiple embedded vectors obtained in this way contain more information and represent the interests of users better in various aspects. Furthermore, we develop a Co-Interest Network to integrate users' long-term and short-term interests. Experiments on several real-world datasets and one large-scale industrial dataset show that HCN effectively outperforms the state-of-the-art methods. We deploy HCN into a large-scale real world E-commerce system and achieve extra 2.5\% improvements on GMV (Gross Merchandise Value).
Dimensionality Reduction in Sentence Transformer Vector Databases with Fast Fourier Transform
Dimensionality reduction in vector databases is pivotal for streamlining AI data management, enabling efficient storage, faster computation, and improved model performance. This paper explores the benefits of reducing vector database dimensions, with a focus on computational efficiency and overcoming the curse of dimensionality. We introduce a novel application of Fast Fourier Transform (FFT) to dimensionality reduction, a method previously underexploited in this context. By demonstrating its utility across various AI domains, including Retrieval-Augmented Generation (RAG) models and image processing, this FFT-based approach promises to improve data retrieval processes and enhance the efficiency and scalability of AI solutions. The incorporation of FFT may not only optimize operations in real-time processing and recommendation systems but also extend to advanced image processing techniques, where dimensionality reduction can significantly improve performance and analysis efficiency. This paper advocates for the broader adoption of FFT in vector database management, marking a significant stride towards addressing the challenges of data volume and complexity in AI research and applications. Unlike many existing approaches, we directly handle the embedding vectors produced by the model after processing a test input.
Language Representations Can be What Recommenders Need: Findings and Potentials
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
Vector Quantization for Recommender Systems: A Review and Outlook
Vector quantization, renowned for its unparalleled feature compression capabilities, has been a prominent topic in signal processing and machine learning research for several decades and remains widely utilized today. With the emergence of large models and generative AI, vector quantization has gained popularity in recommender systems, establishing itself as a preferred solution. This paper starts with a comprehensive review of vector quantization techniques. It then explores systematic taxonomies of vector quantization methods for recommender systems (VQ4Rec), examining their applications from multiple perspectives. Further, it provides a thorough introduction to research efforts in diverse recommendation scenarios, including efficiency-oriented approaches and quality-oriented approaches. Finally, the survey analyzes the remaining challenges and anticipates future trends in VQ4Rec, including the challenges associated with the training of vector quantization, the opportunities presented by large language models, and emerging trends in multimodal recommender systems. We hope this survey can pave the way for future researchers in the recommendation community and accelerate their exploration in this promising field.
Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance
Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix {sf A} and a positive semi-definite matrix Win R^{ntimes n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}, where {sf B}={sf A}(Wotimes I) or {sf B}={sf A}(W^{1/2}otimes W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}h with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
SVD-Free Low-Rank Adaptive Gradient Optimization for Large Language Models
Low-rank optimization has emerged as a promising direction in training large language models (LLMs) to reduce the memory usage of adaptive optimizers by constraining learning to a lower-dimensional space. Prior work typically projects gradients of linear layers using approaches based on Singular Value Decomposition (SVD). However, applying SVD-based procedures individually to each layer in large models is computationally expensive and incurs additional memory costs due to storing the projection matrices. In this work, we propose a computationally efficient and conceptually simple two-step procedure to approximate SVD-based gradient projections into lower-dimensional spaces. First, we construct a complete orthogonal basis using predefined orthogonal matrices of the Discrete Cosine Transform (DCT). Second, we adaptively select basis columns based on their alignment with the gradient of each layer. Each projection matrix in our method is obtained via a single matrix multiplication followed by a lightweight sorting step to identify the most relevant basis vectors. Due to the predefined nature of the orthogonal bases, they are computed once at the start of training. During training, we store only the indices of the selected columns, avoiding the need to store full projection matrices for each layer. Our numerical experiments on both pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy in approximating optimal low-rank projections, matching the performance of costly SVD-based methods while achieving faster runtime and reduced memory usage.
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
We propose ScaledGD(\lambda), a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, ScaledGD(\lambda) starts from a small random initialization, and proceeds by gradient descent with a specific form of damped preconditioning to combat bad curvatures induced by overparameterization and ill-conditioning. At the expense of light computational overhead incurred by preconditioners, ScaledGD(\lambda) is remarkably robust to ill-conditioning compared to vanilla gradient descent (GD) even with overprameterization. Specifically, we show that, under the Gaussian design, ScaledGD(\lambda) converges to the true low-rank matrix at a constant linear rate after a small number of iterations that scales only logarithmically with respect to the condition number and the problem dimension. This significantly improves over the convergence rate of vanilla GD which suffers from a polynomial dependency on the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
Rank-adaptive spectral pruning of convolutional layers during training
The computing cost and memory demand of deep learning pipelines have grown fast in recent years and thus a variety of pruning techniques have been developed to reduce model parameters. The majority of these techniques focus on reducing inference costs by pruning the network after a pass of full training. A smaller number of methods address the reduction of training costs, mostly based on compressing the network via low-rank layer factorizations. Despite their efficiency for linear layers, these methods fail to effectively handle convolutional filters. In this work, we propose a low-parametric training method that factorizes the convolutions into tensor Tucker format and adaptively prunes the Tucker ranks of the convolutional kernel during training. Leveraging fundamental results from geometric integration theory of differential equations on tensor manifolds, we obtain a robust training algorithm that provably approximates the full baseline performance and guarantees loss descent. A variety of experiments against the full model and alternative low-rank baselines are implemented, showing that the proposed method drastically reduces the training costs, while achieving high performance, comparable to or better than the full baseline, and consistently outperforms competing low-rank approaches.
TLDR: Twin Learning for Dimensionality Reduction
Dimensionality reduction methods are unsupervised approaches which learn low-dimensional spaces where some properties of the initial space, typically the notion of "neighborhood", are preserved. Such methods usually require propagation on large k-NN graphs or complicated optimization solvers. On the other hand, self-supervised learning approaches, typically used to learn representations from scratch, rely on simple and more scalable frameworks for learning. In this paper, we propose TLDR, a dimensionality reduction method for generic input spaces that is porting the recent self-supervised learning framework of Zbontar et al. (2021) to the specific task of dimensionality reduction, over arbitrary representations. We propose to use nearest neighbors to build pairs from a training set and a redundancy reduction loss to learn an encoder that produces representations invariant across such pairs. TLDR is a method that is simple, easy to train, and of broad applicability; it consists of an offline nearest neighbor computation step that can be highly approximated, and a straightforward learning process. Aiming for scalability, we focus on improving linear dimensionality reduction, and show consistent gains on image and document retrieval tasks, e.g. gaining +4% mAP over PCA on ROxford for GeM- AP, improving the performance of DINO on ImageNet or retaining it with a 10x compression.
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin et al., 2019): GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.
Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases
Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.
Multi-task Self-Supervised Visual Learning
We investigate methods for combining multiple self-supervised tasks--i.e., supervised tasks where data can be collected without manual labeling--in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks--even via a naive multi-head architecture--always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.
KIND: Knowledge Integration and Diversion in Diffusion Models
Pre-trained models have become the preferred backbone due to the expansion of model parameters, with techniques like Parameter-Efficient Fine-Tuning (PEFTs) typically fixing the parameters of these models. However, pre-trained models may not always be optimal, especially when there are discrepancies between training tasks and target tasks, potentially resulting in negative transfer. To address this, we introduce KIND, which performs Knowledge INtegration and Diversion in diffusion models. KIND first integrates knowledge by decomposing parameter matrices of models using U, Sigma, and V matrices, formally inspired by singular value decomposition (SVD). Then it explicitly partitions the components of these matrices into learngenes and tailors to condense common and class-specific knowledge, respectively, through a class gate. In this way, KIND redefines traditional pre-training methods by adjusting training objectives from maximizing model performance on current tasks to condensing transferable common knowledge, leveraging the Learngene framework. We conduct experiments on ImageNet-1K and compare KIND with PEFT and other learngene methods. Results indicate that KIND achieves state-of-the-art performance compared to other PEFT and learngene methods. Specifically, the images generated by KIND achieves more than 6.54 and 1.07 decrease in FID and sFID on DiT-L/2, utilizing only 45.4M trainable parameters and saving at least 35.4G FLOPs in computational cost.
Speed-up and multi-view extensions to Subclass Discriminant Analysis
In this paper, we propose a speed-up approach for subclass discriminant analysis and formulate a novel efficient multi-view solution to it. The speed-up approach is developed based on graph embedding and spectral regression approaches that involve eigendecomposition of the corresponding Laplacian matrix and regression to its eigenvectors. We show that by exploiting the structure of the between-class Laplacian matrix, the eigendecomposition step can be substituted with a much faster process. Furthermore, we formulate a novel criterion for multi-view subclass discriminant analysis and show that an efficient solution for it can be obtained in a similar to the single-view manner. We evaluate the proposed methods on nine single-view and nine multi-view datasets and compare them with related existing approaches. Experimental results show that the proposed solutions achieve competitive performance, often outperforming the existing methods. At the same time, they significantly decrease the training time.
LLM-KT: A Versatile Framework for Knowledge Transfer from Large Language Models to Collaborative Filtering
We present LLM-KT, a flexible framework designed to enhance collaborative filtering (CF) models by seamlessly integrating LLM (Large Language Model)-generated features. Unlike existing methods that rely on passing LLM-generated features as direct inputs, our framework injects these features into an intermediate layer of any CF model, allowing the model to reconstruct and leverage the embeddings internally. This model-agnostic approach works with a wide range of CF models without requiring architectural changes, making it adaptable to various recommendation scenarios. Our framework is built for easy integration and modification, providing researchers and developers with a powerful tool for extending CF model capabilities through efficient knowledge transfer. We demonstrate its effectiveness through experiments on the MovieLens and Amazon datasets, where it consistently improves baseline CF models. Experimental studies showed that LLM-KT is competitive with the state-of-the-art methods in context-aware settings but can be applied to a broader range of CF models than current approaches.
STUDY: Socially Aware Temporally Casual Decoder Recommender Systems
With the overwhelming amount of data available both on and offline today, recommender systems have become much needed to help users find items tailored to their interests. When social network information exists there are methods that utilize this information to make better recommendations, however the methods are often clunky with complex architectures and training procedures. Furthermore many of the existing methods utilize graph neural networks which are notoriously difficult to train. To address this, we propose Socially-aware Temporally caUsal Decoder recommender sYstems (STUDY). STUDY does joint inference over groups of users who are adjacent in the social network graph using a single forward pass of a modified transformer decoder network. We test our method in a school-based educational content setting, using classroom structure to define social networks. Our method outperforms both social and sequential methods while maintaining the design simplicity of a single homogeneous network that models all interactions in the data. We also carry out ablation studies to understand the drivers of our performance gains and find that our model depends on leveraging a social network structure that effectively models the similarities in user behavior.
Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information
We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information. Our approach includes a dynamic embedding method that reduces the non-stationary, high-dimensional state space into a lower-dimensional representation. We design a reinforcement learning (RL) framework that integrates generative autoencoders and online meta-learning to dynamically embed market information, enabling the RL agent to focus on the most impactful parts of the state space for portfolio allocation decisions. Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks and the predict-then-optimize (PTO) approach using machine learning, particularly during periods of market stress. Traditional factor models do not fully explain this superior performance. The framework's ability to time volatility reduces its market exposure during turbulent times. Ablation studies confirm the robustness of this performance across various reinforcement learning algorithms. Additionally, the embedding and meta-learning techniques effectively manage the complexities of high-dimensional, noisy, and non-stationary financial data, enhancing both portfolio performance and risk management.
LoQT: Low Rank Adapters for Quantized Training
Training of large neural networks requires significant computational resources. Despite advances using low-rank adapters and quantization, pretraining of models such as LLMs on consumer hardware has not been possible without model sharding, offloading during training, or per-layer gradient updates. To address these limitations, we propose LoQT, a method for efficiently training quantized models. LoQT uses gradient-based tensor factorization to initialize low-rank trainable weight matrices that are periodically merged into quantized full-rank weight matrices. Our approach is suitable for both pretraining and fine-tuning of models, which we demonstrate experimentally for language modeling and downstream task adaptation. We find that LoQT enables efficient training of models up to 7B parameters on a consumer-grade 24GB GPU. We also demonstrate the feasibility of training a 13B parameter model using per-layer gradient updates on the same hardware.
Look-ups are not (yet) all you need for deep learning inference
Fast approximations to matrix multiplication have the potential to dramatically reduce the cost of neural network inference. Recent work on approximate matrix multiplication proposed to replace costly multiplications with table-lookups by fitting a fast hash function from training data. In this work, we propose improvements to this previous work, targeted to the deep learning inference setting, where one has access to both training data and fixed (already learned) model weight matrices. We further propose a fine-tuning procedure for accelerating entire neural networks while minimizing loss in accuracy. Finally, we analyze the proposed method on a simple image classification task. While we show improvements to prior work, overall classification accuracy remains substantially diminished compared to exact matrix multiplication. Our work, despite this negative result, points the way towards future efforts to accelerate inner products with fast nonlinear hashing methods.
Neural networks with trainable matrix activation functions
The training process of neural networks usually optimize weights and bias parameters of linear transformations, while nonlinear activation functions are pre-specified and fixed. This work develops a systematic approach to constructing matrix activation functions whose entries are generalized from ReLU. The activation is based on matrix-vector multiplications using only scalar multiplications and comparisons. The proposed activation functions depend on parameters that are trained along with the weights and bias vectors. Neural networks based on this approach are simple and efficient and are shown to be robust in numerical experiments.
About Graph Degeneracy, Representation Learning and Scalability
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting applications, ranging from drug discovery to recommender systems. To achieve such tasks, tremendous work has been accomplished to learn embedding of nodes and edges into finite-dimension vector spaces. This task is called Graph Representation Learning. However, Graph Representation Learning techniques often display prohibitive time and memory complexities, preventing their use in real-time with business size graphs. In this paper, we address this issue by leveraging a degeneracy property of Graphs - the K-Core Decomposition. We present two techniques taking advantage of this decomposition to reduce the time and memory consumption of walk-based Graph Representation Learning algorithms. We evaluate the performances, expressed in terms of quality of embedding and computational resources, of the proposed techniques on several academic datasets. Our code is available at https://github.com/SBrandeis/kcore-embedding
Conditionally Strongly Log-Concave Generative Models
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the varphi^4 model and weak lensing convergence maps with higher resolution than in previous works.
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
In this paper, we introduce a novel theoretical framework for multi-task regression, applying random matrix theory to provide precise performance estimations, under high-dimensional, non-Gaussian data distributions. We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information. We derive a closed-form solution for multi-task optimization in the context of linear models. Our analysis provides valuable insights by linking the multi-task learning performance to various model statistics such as raw data covariances, signal-generating hyperplanes, noise levels, as well as the size and number of datasets. We finally propose a consistent estimation of training and testing errors, thereby offering a robust foundation for hyperparameter optimization in multi-task regression scenarios. Experimental validations on both synthetic and real-world datasets in regression and multivariate time series forecasting demonstrate improvements on univariate models, incorporating our method into the training loss and thus leveraging multivariate information.
Fast Differentiable Matrix Square Root
Computing the matrix square root or its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or in the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad\'e Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. Both methods yield considerable speed-up compared with the SVD or the Newton-Schulz iteration. Experimental results on the de-correlated batch normalization and second-order vision transformer demonstrate that our methods can also achieve competitive and even slightly better performances. The code is available at https://github.com/KingJamesSong/FastDifferentiableMatSqrt{https://github.com/KingJamesSong/FastDifferentiableMatSqrt}.
Trained Rank Pruning for Efficient Deep Neural Networks
The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Popular parameter-efficient fine-tuning (PEFT) methods, such as LoRA and its variants, freeze pre-trained model weights \(W\) and inject learnable matrices \(\Delta W\). These \(\Delta W\) matrices are structured for efficient parameterization, often using techniques like low-rank approximations or scaling vectors. However, these methods typically show a performance gap compared to full fine-tuning. Although recent PEFT methods have narrowed this gap, they do so at the cost of additional learnable parameters. We propose SVFT, a simple approach that fundamentally differs from existing methods: the structure imposed on \(\Delta W\) depends on the specific weight matrix \(W\). Specifically, SVFT updates \(W\) as a sparse combination of outer products of its singular vectors, training only the coefficients (scales) of these sparse combinations. This approach allows fine-grained control over expressivity through the number of coefficients. Extensive experiments on language and vision benchmarks show that SVFT recovers up to 96% of full fine-tuning performance while training only 0.006 to 0.25% of parameters, outperforming existing methods that only recover up to 85% performance using 0.03 to 0.8% of the trainable parameter budget.
Controllable Multi-Interest Framework for Recommendation
Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.
Fast Updating Truncated SVD for Representation Learning with Sparse Matrices
Updating a truncated Singular Value Decomposition (SVD) is crucial in representation learning, especially when dealing with large-scale data matrices that continuously evolve in practical scenarios. Aligning SVD-based models with fast-paced updates becomes increasingly important. Existing methods for updating truncated SVDs employ Rayleigh-Ritz projection procedures, where projection matrices are augmented based on original singular vectors. However, these methods suffer from inefficiency due to the densification of the update matrix and the application of the projection to all singular vectors. To address these limitations, we introduce a novel method for dynamically approximating the truncated SVD of a sparse and temporally evolving matrix. Our approach leverages sparsity in the orthogonalization process of augmented matrices and utilizes an extended decomposition to independently store projections in the column space of singular vectors. Numerical experiments demonstrate a remarkable efficiency improvement of an order of magnitude compared to previous methods. Remarkably, this improvement is achieved while maintaining a comparable precision to existing approaches.
MoDeGPT: Modular Decomposition for Large Language Model Compression
Large Language Models (LLMs) have reshaped the landscape of artificial intelligence by demonstrating exceptional performance across various tasks. However, substantial computational requirements make their deployment challenging on devices with limited resources. Recently, compression methods using low-rank matrix techniques have shown promise, yet these often lead to degraded accuracy or introduce significant overhead in parameters and inference latency. This paper introduces Modular Decomposition (MoDeGPT), a novel structured compression framework that does not need recovery fine-tuning while resolving the above drawbacks. MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions via reconstructing the module-level outputs. MoDeGPT is developed based on a theoretical framework that utilizes three well-established matrix decomposition algorithms -- Nystr\"om approximation, CR decomposition, and SVD -- and applies them to our redefined transformer modules. Our comprehensive experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods that rely on gradient information, and saves 98% of compute costs on compressing a 13B model. On Llama-2/3 and OPT models, MoDeGPT maintains 90-95% zero-shot performance with 25-30% compression rates. Moreover, the compression can be done on a single GPU within a few hours and increases the inference throughput by up to 46%.
SimpleX: A Simple and Strong Baseline for Collaborative Filtering
Collaborative filtering (CF) is a widely studied research topic in recommender systems. The learning of a CF model generally depends on three major components, namely interaction encoder, loss function, and negative sampling. While many existing studies focus on the design of more powerful interaction encoders, the impacts of loss functions and negative sampling ratios have not yet been well explored. In this work, we show that the choice of loss function as well as negative sampling ratio is equivalently important. More specifically, we propose the cosine contrastive loss (CCL) and further incorporate it to a simple unified CF model, dubbed SimpleX. Extensive experiments have been conducted on 11 benchmark datasets and compared with 29 existing CF models in total. Surprisingly, the results show that, under our CCL loss and a large negative sampling ratio, SimpleX can surpass most sophisticated state-of-the-art models by a large margin (e.g., max 48.5% improvement in NDCG@20 over LightGCN). We believe that SimpleX could not only serve as a simple strong baseline to foster future research on CF, but also shed light on the potential research direction towards improving loss function and negative sampling. Our source code will be available at https://reczoo.github.io/SimpleX.
An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Exploring Low Rank Training of Deep Neural Networks
Training deep neural networks in low rank, i.e. with factorised layers, is of particular interest to the community: it offers efficiency over unfactorised training in terms of both memory consumption and training time. Prior work has focused on low rank approximations of pre-trained networks and training in low rank space with additional objectives, offering various ad hoc explanations for chosen practice. We analyse techniques that work well in practice, and through extensive ablations on models such as GPT2 we provide evidence falsifying common beliefs in the field, hinting in the process at exciting research opportunities that still need answering.
MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
Feature Expansion for Graph Neural Networks
Graph neural networks aim to learn representations for graph-structured data and show impressive performance, particularly in node classification. Recently, many methods have studied the representations of GNNs from the perspective of optimization goals and spectral graph theory. However, the feature space that dominates representation learning has not been systematically studied in graph neural networks. In this paper, we propose to fill this gap by analyzing the feature space of both spatial and spectral models. We decompose graph neural networks into determined feature spaces and trainable weights, providing the convenience of studying the feature space explicitly using matrix space analysis. In particular, we theoretically find that the feature space tends to be linearly correlated due to repeated aggregations. Motivated by these findings, we propose 1) feature subspaces flattening and 2) structural principal components to expand the feature space. Extensive experiments verify the effectiveness of our proposed more comprehensive feature space, with comparable inference time to the baseline, and demonstrate its efficient convergence capability.
Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation
In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.
Deep Learning Meets Sparse Regularization: A Signal Processing Perspective
Deep learning has been wildly successful in practice and most state-of-the-art machine learning methods are based on neural networks. Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep neural networks. In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of deep learning. This framework precisely characterizes the functional properties of neural networks that are trained to fit to data. The key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing. This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
ReALLM: A general framework for LLM compression and fine-tuning
We introduce ReALLM, a novel approach for compression and memory-efficient adaptation of pre-trained language models that encompasses most of the post-training quantization and fine-tuning methods for a budget of <4 bits. Pre-trained matrices are decomposed into a high-precision low-rank component and a vector-quantized latent representation (using an autoencoder). During the fine-tuning step, only the low-rank components are updated. Our results show that pre-trained matrices exhibit different patterns. ReALLM adapts the shape of the encoder (small/large embedding, high/low bit VQ, etc.) to each matrix. ReALLM proposes to represent each matrix with a small embedding on b bits and a neural decoder model D_phi with its weights on b_phi bits. The decompression of a matrix requires only one embedding and a single forward pass with the decoder. Our weight-only quantization algorithm yields the best results on language generation tasks (C4 and WikiText-2) for a budget of 3 bits without any training. With a budget of 2 bits, ReALLM achieves state-of-the art performance after fine-tuning on a small calibration dataset.
Discrete Markov Bridge
Discrete diffusion has recently emerged as a promising paradigm in discrete data modeling. However, existing methods typically rely on a fixed rate transition matrix during training, which not only limits the expressiveness of latent representations, a fundamental strength of variational methods, but also constrains the overall design space. To address these limitations, we propose Discrete Markov Bridge, a novel framework specifically designed for discrete representation learning. Our approach is built upon two key components: Matrix Learning and Score Learning. We conduct a rigorous theoretical analysis, establishing formal performance guarantees for Matrix Learning and proving the convergence of the overall framework. Furthermore, we analyze the space complexity of our method, addressing practical constraints identified in prior studies. Extensive empirical evaluations validate the effectiveness of the proposed Discrete Markov Bridge, which achieves an Evidence Lower Bound (ELBO) of 1.38 on the Text8 dataset, outperforming established baselines. Moreover, the proposed model demonstrates competitive performance on the CIFAR-10 dataset, achieving results comparable to those obtained by image-specific generation approaches.
Generalization Bounds for Magnitude-Based Pruning via Sparse Matrix Sketching
In this paper, we derive a novel bound on the generalization error of Magnitude-Based pruning of overparameterized neural networks. Our work builds on the bounds in Arora et al. [2018] where the error depends on one, the approximation induced by pruning, and two, the number of parameters in the pruned model, and improves upon standard norm-based generalization bounds. The pruned estimates obtained using our new Magnitude-Based compression algorithm are close to the unpruned functions with high probability, which improves the first criteria. Using Sparse Matrix Sketching, the space of the pruned matrices can be efficiently represented in the space of dense matrices of much smaller dimensions, thereby lowering the second criterion. This leads to stronger generalization bound than many state-of-the-art methods, thereby breaking new ground in the algorithm development for pruning and bounding generalization error of overparameterized models. Beyond this, we extend our results to obtain generalization bound for Iterative Pruning [Frankle and Carbin, 2018]. We empirically verify the success of this new method on ReLU-activated Feed Forward Networks on the MNIST and CIFAR10 datasets.
Linear algebra with transformers
Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.
Taming graph kernels with random features
We introduce in this paper the mechanism of graph random features (GRFs). GRFs can be used to construct unbiased randomized estimators of several important kernels defined on graphs' nodes, in particular the regularized Laplacian kernel. As regular RFs for non-graph kernels, they provide means to scale up kernel methods defined on graphs to larger networks. Importantly, they give substantial computational gains also for smaller graphs, while applied in downstream applications. Consequently, GRFs address the notoriously difficult problem of cubic (in the number of the nodes of the graph) time complexity of graph kernels algorithms. We provide a detailed theoretical analysis of GRFs and an extensive empirical evaluation: from speed tests, through Frobenius relative error analysis to kmeans graph-clustering with graph kernels. We show that the computation of GRFs admits an embarrassingly simple distributed algorithm that can be applied if the graph under consideration needs to be split across several machines. We also introduce a (still unbiased) quasi Monte Carlo variant of GRFs, q-GRFs, relying on the so-called reinforced random walks, that might be used to optimize the variance of GRFs. As a byproduct, we obtain a novel approach to solve certain classes of linear equations with positive and symmetric matrices.
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
Unsupervised Manifold Linearizing and Clustering
We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Nonparametric Deconvolution Models
We describe nonparametric deconvolution models (NDMs), a family of Bayesian nonparametric models for collections of data in which each observation is the average over the features from heterogeneous particles. For example, these types of data are found in elections, where we observe precinct-level vote tallies (observations) of individual citizens' votes (particles) across each of the candidates or ballot measures (features), where each voter is part of a specific voter cohort or demographic (factor). Like the hierarchical Dirichlet process, NDMs rely on two tiers of Dirichlet processes to explain the data with an unknown number of latent factors; each observation is modeled as a weighted average of these latent factors. Unlike existing models, NDMs recover how factor distributions vary locally for each observation. This uniquely allows NDMs both to deconvolve each observation into its constituent factors, and also to describe how the factor distributions specific to each observation vary across observations and deviate from the corresponding global factors. We present variational inference techniques for this family of models and study its performance on simulated data and voting data from California. We show that including local factors improves estimates of global factors and provides a novel scaffold for exploring data.
k-Sparse Autoencoders
Recently, it has been observed that when representations are learnt in a way that encourages sparsity, improved performance is obtained on classification tasks. These methods involve combinations of activation functions, sampling steps and different kinds of penalties. To investigate the effectiveness of sparsity by itself, we propose the k-sparse autoencoder, which is an autoencoder with linear activation function, where in hidden layers only the k highest activities are kept. When applied to the MNIST and NORB datasets, we find that this method achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs. k-sparse autoencoders are simple to train and the encoding stage is very fast, making them well-suited to large problem sizes, where conventional sparse coding algorithms cannot be applied.
MASIL: Towards Maximum Separable Class Representation for Few Shot Class Incremental Learning
Few Shot Class Incremental Learning (FSCIL) with few examples per class for each incremental session is the realistic setting of continual learning since obtaining large number of annotated samples is not feasible and cost effective. We present the framework MASIL as a step towards learning the maximal separable classifier. It addresses the common problem i.e forgetting of old classes and over-fitting to novel classes by learning the classifier weights to be maximally separable between classes forming a simplex Equiangular Tight Frame. We propose the idea of concept factorization explaining the collapsed features for base session classes in terms of concept basis and use these to induce classifier simplex for few shot classes. We further adds fine tuning to reduce any error occurred during factorization and train the classifier jointly on base and novel classes without retaining any base class samples in memory. Experimental results on miniImageNet, CIFAR-100 and CUB-200 demonstrate that MASIL outperforms all the benchmarks.
Comprehensive Movie Recommendation System
A recommender system, also known as a recommendation system, is a type of information filtering system that attempts to forecast a user's rating or preference for an item. This article designs and implements a complete movie recommendation system prototype based on the Genre, Pearson Correlation Coefficient, Cosine Similarity, KNN-Based, Content-Based Filtering using TFIDF and SVD, Collaborative Filtering using TFIDF and SVD, Surprise Library based recommendation system technology. Apart from that in this paper, we present a novel idea that applies machine learning techniques to construct a cluster for the movie based on genres and then observes the inertia value number of clusters were defined. The constraints of the approaches discussed in this work have been described, as well as how one strategy overcomes the disadvantages of another. The whole work has been done on the dataset Movie Lens present at the group lens website which contains 100836 ratings and 3683 tag applications across 9742 movies. These data were created by 610 users between March 29, 1996, and September 24, 2018.
Active Learning Meets Optimized Item Selection
Designing recommendation systems with limited or no available training data remains a challenge. To that end, a new combinatorial optimization problem is formulated to generate optimized item selection for experimentation with the goal to shorten the time for collecting randomized training data. We first present an overview of the optimized item selection problem and a multi-level optimization framework to solve it. The approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. We then discuss how to incorporate optimized item selection with active learning as part of randomized exploration in an ongoing fashion.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.
Implicit Maximum a Posteriori Filtering via Adaptive Optimization
Bayesian filtering approximates the true underlying behavior of a time-varying system by inverting an explicit generative model to convert noisy measurements into state estimates. This process typically requires either storage, inversion, and multiplication of large matrices or Monte Carlo estimation, neither of which are practical in high-dimensional state spaces such as the weight spaces of artificial neural networks. Here, we frame the standard Bayesian filtering problem as optimization over a time-varying objective. Instead of maintaining matrices for the filtering equations or simulating particles, we specify an optimizer that defines the Bayesian filter implicitly. In the linear-Gaussian setting, we show that every Kalman filter has an equivalent formulation using K steps of gradient descent. In the nonlinear setting, our experiments demonstrate that our framework results in filters that are effective, robust, and scalable to high-dimensional systems, comparing well against the standard toolbox of Bayesian filtering solutions. We suggest that it is easier to fine-tune an optimizer than it is to specify the correct filtering equations, making our framework an attractive option for high-dimensional filtering problems.
Wukong: Towards a Scaling Law for Large-Scale Recommendation
Scaling laws play an instrumental role in the sustainable improvement in model quality. Unfortunately, recommendation models to date do not exhibit such laws similar to those observed in the domain of large language models, due to the inefficiencies of their upscaling mechanisms. This limitation poses significant challenges in adapting these models to increasingly more complex real-world datasets. In this paper, we propose an effective network architecture based purely on stacked factorization machines, and a synergistic upscaling strategy, collectively dubbed Wukong, to establish a scaling law in the domain of recommendation. Wukong's unique design makes it possible to capture diverse, any-order of interactions simply through taller and wider layers. We conducted extensive evaluations on six public datasets, and our results demonstrate that Wukong consistently outperforms state-of-the-art models quality-wise. Further, we assessed Wukong's scalability on an internal, large-scale dataset. The results show that Wukong retains its superiority in quality over state-of-the-art models, while holding the scaling law across two orders of magnitude in model complexity, extending beyond 100 Gflop or equivalently up to GPT-3/LLaMa-2 scale of total training compute, where prior arts fall short.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON
Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications
SESA: Supervised Explicit Semantic Analysis
In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.
GraphHash: Graph Clustering Enables Parameter Efficiency in Recommender Systems
Deep recommender systems rely heavily on large embedding tables to handle high-cardinality categorical features such as user/item identifiers, and face significant memory constraints at scale. To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables. Concurrently, graph-based collaborative signals have emerged as powerful tools in recommender systems, yet their potential for optimizing embedding table reduction remains unexplored. This paper introduces GraphHash, the first graph-based approach that leverages modularity-based bipartite graph clustering on user-item interaction graphs to reduce embedding table sizes. We demonstrate that the modularity objective has a theoretical connection to message-passing, which provides a foundation for our method. By employing fast clustering algorithms, GraphHash serves as a computationally efficient proxy for message-passing during preprocessing and a plug-and-play graph-based alternative to traditional ID hashing. Extensive experiments show that GraphHash substantially outperforms diverse hashing baselines on both retrieval and click-through-rate prediction tasks. In particular, GraphHash achieves on average a 101.52% improvement in recall when reducing the embedding table size by more than 75%, highlighting the value of graph-based collaborative information for model reduction. Our code is available at https://github.com/snap-research/GraphHash.
Scaling Pre-trained Language Models to Deeper via Parameter-efficient Architecture
In this paper, we propose a highly parameter-efficient approach to scaling pre-trained language models (PLMs) to a deeper model depth. Unlike prior work that shares all parameters or uses extra blocks, we design a more capable parameter-sharing architecture based on matrix product operator (MPO). MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts: the major part that contains the major information (central tensor) and the supplementary part that only has a small proportion of parameters (auxiliary tensors). Based on such a decomposition, our architecture shares the central tensor across all layers for reducing the model size and meanwhile keeps layer-specific auxiliary tensors (also using adapters) for enhancing the adaptation flexibility. To improve the model training, we further propose a stable initialization algorithm tailored for the MPO-based architecture. Extensive experiments have demonstrated the effectiveness of our proposed model in reducing the model size and achieving highly competitive performance.
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
In neural Information Retrieval, ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. In this work, we present a new first-stage ranker based on explicit sparsity regularization and a log-saturation effect on term weights, leading to highly sparse representations and competitive results with respect to state-of-the-art dense and sparse methods. Our approach is simple, trained end-to-end in a single stage. We also explore the trade-off between effectiveness and efficiency, by controlling the contribution of the sparsity regularization.
Is Cosine-Similarity of Embeddings Really About Similarity?
Cosine-similarity is the cosine of the angle between two vectors, or equivalently the dot product between their normalizations. A popular application is to quantify semantic similarity between high-dimensional objects by applying cosine-similarity to a learned low-dimensional feature embedding. This can work better but sometimes also worse than the unnormalized dot-product between embedded vectors in practice. To gain insight into this empirical observation, we study embeddings derived from regularized linear models, where closed-form solutions facilitate analytical insights. We derive analytically how cosine-similarity can yield arbitrary and therefore meaningless `similarities.' For some linear models the similarities are not even unique, while for others they are implicitly controlled by the regularization. We discuss implications beyond linear models: a combination of different regularizations are employed when learning deep models; these have implicit and unintended effects when taking cosine-similarities of the resulting embeddings, rendering results opaque and possibly arbitrary. Based on these insights, we caution against blindly using cosine-similarity and outline alternatives.
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.
Extending Bootstrap AMG for Clustering of Attributed Graphs
In this paper we propose a new approach to detect clusters in undirected graphs with attributed vertices. We incorporate structural and attribute similarities between the vertices in an augmented graph by creating additional vertices and edges as proposed in [1, 2]. The augmented graph is then embedded in a Euclidean space associated to its Laplacian and we cluster vertices via a modified K-means algorithm, using a new vector-valued distance in the embedding space. Main novelty of our method, which can be classified as an early fusion method, i.e., a method in which additional information on vertices are fused to the structure information before applying clustering, is the interpretation of attributes as new realizations of graph vertices, which can be dealt with as coordinate vectors in a related Euclidean space. This allows us to extend a scalable generalized spectral clustering procedure which substitutes graph Laplacian eigenvectors with some vectors, named algebraically smooth vectors, obtained by a linear-time complexity Algebraic MultiGrid (AMG) method. We discuss the performance of our proposed clustering method by comparison with recent literature approaches and public available results. Extensive experiments on different types of synthetic datasets and real-world attributed graphs show that our new algorithm, embedding attributes information in the clustering, outperforms structure-only-based methods, when the attributed network has an ambiguous structure. Furthermore, our new method largely outperforms the method which originally proposed the graph augmentation, showing that our embedding strategy and vector-valued distance are very effective in taking advantages from the augmented-graph representation.
Scalable and Incremental Learning of Gaussian Mixture Models
This work presents a fast and scalable algorithm for incremental learning of Gaussian mixture models. By performing rank-one updates on its precision matrices and determinants, its asymptotic time complexity is of NKD^2 for N data points, K Gaussian components and D dimensions. The resulting algorithm can be applied to high dimensional tasks, and this is confirmed by applying it to the classification datasets MNIST and CIFAR-10. Additionally, in order to show the algorithm's applicability to function approximation and control tasks, it is applied to three reinforcement learning tasks and its data-efficiency is evaluated.
SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values
Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks. However, fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, mitigate this issue by adjusting only a small subset of parameters. Nevertheless, these methods typically employ random initialization for low-rank matrices, which can lead to inefficiencies in gradient descent and diminished generalizability due to suboptimal starting points. To address these limitations, we propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to initialize low-rank matrices using critical singular values as trainable parameters. Specifically, SVFit performs SVD on the pre-trained weight matrix to obtain the best rank-r approximation matrix, emphasizing the most critical singular values that capture over 99% of the matrix's information. These top-r singular values are then used as trainable parameters to scale the fundamental subspaces of the matrix, facilitating rapid domain adaptation. Extensive experiments across various pre-trained models in natural language understanding, text-to-image generation, and image classification tasks reveal that SVFit outperforms LoRA while requiring 16 times fewer trainable parameters.
Exact Gauss-Newton Optimization for Training Deep Neural Networks
We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an epsilon-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks.
Asymmetry in Low-Rank Adapters of Foundation Models
Parameter-efficient fine-tuning optimizes large, pre-trained foundation models by updating a subset of parameters; in this class, Low-Rank Adaptation (LoRA) is particularly effective. Inspired by an effort to investigate the different roles of LoRA matrices during fine-tuning, this paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices. Specifically, when updating the parameter matrices of a neural network by adding a product BA, we observe that the B and A matrices have distinct functions: A extracts features from the input, while B uses these features to create the desired output. Based on this observation, we demonstrate that fine-tuning B is inherently more effective than fine-tuning A, and that a random untrained A should perform nearly as well as a fine-tuned one. Using an information-theoretic lens, we also bound the generalization of low-rank adapters, showing that the parameter savings of exclusively training B improves the bound. We support our conclusions with experiments on RoBERTa, BART-Large, LLaMA-2, and ViTs.
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
MatrixKAN: Parallelized Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KAN) are a new class of neural network architecture representing a promising alternative to the Multilayer Perceptron (MLP), demonstrating improved expressiveness and interpretability. However, KANs suffer from slow training and inference speeds relative to MLPs due in part to the recursive nature of the underlying B-spline calculations. This issue is particularly apparent with respect to KANs utilizing high-degree B-splines, as the number of required non-parallelizable recursions is proportional to B-spline degree. We solve this issue by proposing MatrixKAN, a novel optimization that parallelizes B-spline calculations with matrix representation and operations, thus significantly improving effective computation time for models utilizing high-degree B-splines. In this paper, we demonstrate the superior scaling of MatrixKAN's computation time relative to B-spline degree. Further, our experiments demonstrate speedups of approximately 40x relative to KAN, with significant additional speedup potential for larger datasets or higher spline degrees.
A Plug-in Method for Representation Factorization in Connectionist Models
In this article, we focus on decomposing latent representations in generative adversarial networks or learned feature representations in deep autoencoders into semantically controllable factors in a semisupervised manner, without modifying the original trained models. Particularly, we propose factors' decomposer-entangler network (FDEN) that learns to decompose a latent representation into mutually independent factors. Given a latent representation, the proposed framework draws a set of interpretable factors, each aligned to independent factors of variations by minimizing their total correlation in an information-theoretic means. As a plug-in method, we have applied our proposed FDEN to the existing networks of adversarially learned inference and pioneer network and performed computer vision tasks of image-to-image translation in semantic ways, e.g., changing styles, while keeping the identity of a subject, and object classification in a few-shot learning scheme. We have also validated the effectiveness of the proposed method with various ablation studies in the qualitative, quantitative, and statistical examination.
Determination of Latent Dimensionality in International Trade Flow
Currently, high-dimensional data is ubiquitous in data science, which necessitates the development of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a low dimensional representation of the data, that is, its inherent structure, is one of the approaches that can serve to understand the dynamics of low dimensional latent features hidden in the data. Nonnegative RESCAL is one such technique, particularly well suited to analyze self-relational data, such as dynamic networks found in international trade flows. Nonnegative RESCAL computes a low dimensional tensor representation by finding the latent space containing multiple modalities. Estimating the dimensionality of this latent space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of the latent space with nonnegative RESCAL, we propose a latent dimension determination method which is based on clustering of the solutions of multiple realizations of nonnegative RESCAL decompositions. We demonstrate the performance of our model selection method on synthetic data and then we apply our method to decompose a network of international trade flows data from International Monetary Fund and validate the resulting features against empirical facts from economic literature.
Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are big(mathcal{O}big(frac 1nbig),,, mathcal{O}big(1{min{m,n}}big)big)-DP under some reasonable restrictions, where m and n are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
FINEST: Stabilizing Recommendations by Rank-Preserving Fine-Tuning
Modern recommender systems may output considerably different recommendations due to small perturbations in the training data. Changes in the data from a single user will alter the recommendations as well as the recommendations of other users. In applications like healthcare, housing, and finance, this sensitivity can have adverse effects on user experience. We propose a method to stabilize a given recommender system against such perturbations. This is a challenging task due to (1) the lack of a ``reference'' rank list that can be used to anchor the outputs; and (2) the computational challenges in ensuring the stability of rank lists with respect to all possible perturbations of training data. Our method, FINEST, overcomes these challenges by obtaining reference rank lists from a given recommendation model and then fine-tuning the model under simulated perturbation scenarios with rank-preserving regularization on sampled items. Our experiments on real-world datasets demonstrate that FINEST can ensure that recommender models output stable recommendations under a wide range of different perturbations without compromising next-item prediction accuracy.
A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee
Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Overparameterized neural networks generalize well but are expensive to train. Ideally, one would like to reduce their computational cost while retaining their generalization benefits. Sparse model training is a simple and promising approach to achieve this, but there remain challenges as existing methods struggle with accuracy loss, slow training runtime, or difficulty in sparsifying all model components. The core problem is that searching for a sparsity mask over a discrete set of sparse matrices is difficult and expensive. To address this, our main insight is to optimize over a continuous superset of sparse matrices with a fixed structure known as products of butterfly matrices. As butterfly matrices are not hardware efficient, we propose simple variants of butterfly (block and flat) to take advantage of modern hardware. Our method (Pixelated Butterfly) uses a simple fixed sparsity pattern based on flat block butterfly and low-rank matrices to sparsify most network layers (e.g., attention, MLP). We empirically validate that Pixelated Butterfly is 3x faster than butterfly and speeds up training to achieve favorable accuracy--efficiency tradeoffs. On the ImageNet classification and WikiText-103 language modeling tasks, our sparse models train up to 2.5x faster than the dense MLP-Mixer, Vision Transformer, and GPT-2 medium with no drop in accuracy.
Meta-Prod2Vec - Product Embeddings Using Side-Information for Recommendation
We propose Meta-Prod2vec, a novel method to compute item similarities for recommendation that leverages existing item metadata. Such scenarios are frequently encountered in applications such as content recommendation, ad targeting and web search. Our method leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items. Specifically, the item metadata is in- jected into the model as side information to regularize the item embeddings. We show that the new item representa- tions lead to better performance on recommendation tasks on an open music dataset.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user's musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.
Experimental Analysis of Large-scale Learnable Vector Storage Compression
Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.
LLMRec: Large Language Models with Graph Augmentation for Recommendation
The problem of data sparsity has long been a challenge in recommendation systems, and previous studies have attempted to address this issue by incorporating side information. However, this approach often introduces side effects such as noise, availability issues, and low data quality, which in turn hinder the accurate modeling of user preferences and adversely impact recommendation performance. In light of the recent advancements in large language models (LLMs), which possess extensive knowledge bases and strong reasoning capabilities, we propose a novel framework called LLMRec that enhances recommender systems by employing three simple yet effective LLM-based graph augmentation strategies. Our approach leverages the rich content available within online platforms (e.g., Netflix, MovieLens) to augment the interaction graph in three ways: (i) reinforcing user-item interaction egde, (ii) enhancing the understanding of item node attributes, and (iii) conducting user node profiling, intuitively from the natural language perspective. By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders. Besides, to ensure the quality of the augmentation, we develop a denoised data robustification mechanism that includes techniques of noisy implicit feedback pruning and MAE-based feature enhancement that help refine the augmented data and improve its reliability. Furthermore, we provide theoretical analysis to support the effectiveness of LLMRec and clarify the benefits of our method in facilitating model optimization. Experimental results on benchmark datasets demonstrate the superiority of our LLM-based augmentation approach over state-of-the-art techniques. To ensure reproducibility, we have made our code and augmented data publicly available at: https://github.com/HKUDS/LLMRec.git
Compute Better Spent: Replacing Dense Layers with Structured Matrices
Dense linear layers are the dominant computational bottleneck in foundation models. Identifying more efficient alternatives to dense matrices has enormous potential for building more compute-efficient models, as exemplified by the success of convolutional networks in the image domain. In this work, we systematically explore structured matrices as replacements for dense matrices. We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance, especially as models scale. Using insights from the Maximal Update Parameterization, we determine the optimal scaling for initialization and learning rates of these unconventional layers. Finally, we measure the scaling laws of different structures to compare how quickly their performance improves with compute. We propose a novel matrix family containing Monarch matrices, the Block Tensor-Train (BTT), which we show performs better than dense matrices for the same compute on multiple tasks. On CIFAR-10/100 with augmentation, BTT achieves exponentially lower training loss than dense when training MLPs and ViTs. BTT matches dense ViT-S/32 performance on ImageNet-1k with 3.8 times less compute and is more efficient than dense for training small GPT-2 language models.
Monolith: Real Time Recommendation System With Collisionless Embedding Table
Building a scalable and real-time recommendation system is vital for many businesses driven by time-sensitive customer feedback, such as short-videos ranking or online ads. Despite the ubiquitous adoption of production-scale deep learning frameworks like TensorFlow or PyTorch, these general-purpose frameworks fall short of business demands in recommendation scenarios for various reasons: on one hand, tweaking systems based on static parameters and dense computations for recommendation with dynamic and sparse features is detrimental to model quality; on the other hand, such frameworks are designed with batch-training stage and serving stage completely separated, preventing the model from interacting with customer feedback in real-time. These issues led us to reexamine traditional approaches and explore radically different design choices. In this paper, we present Monolith, a system tailored for online training. Our design has been driven by observations of our application workloads and production environment that reflects a marked departure from other recommendations systems. Our contributions are manifold: first, we crafted a collisionless embedding table with optimizations such as expirable embeddings and frequency filtering to reduce its memory footprint; second, we provide an production-ready online training architecture with high fault-tolerance; finally, we proved that system reliability could be traded-off for real-time learning. Monolith has successfully landed in the BytePlus Recommend product.
Interventional Causal Representation Learning
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
Incremental Task Learning with Incremental Rank Updates
Incremental Task learning (ITL) is a category of continual learning that seeks to train a single network for multiple tasks (one after another), where training data for each task is only available during the training of that task. Neural networks tend to forget older tasks when they are trained for the newer tasks; this property is often known as catastrophic forgetting. To address this issue, ITL methods use episodic memory, parameter regularization, masking and pruning, or extensible network structures. In this paper, we propose a new incremental task learning framework based on low-rank factorization. In particular, we represent the network weights for each layer as a linear combination of several rank-1 matrices. To update the network for a new task, we learn a rank-1 (or low-rank) matrix and add that to the weights of every layer. We also introduce an additional selector vector that assigns different weights to the low-rank matrices learned for the previous tasks. We show that our approach performs better than the current state-of-the-art methods in terms of accuracy and forgetting. Our method also offers better memory efficiency compared to episodic memory- and mask-based approaches. Our code will be available at https://github.com/CSIPlab/task-increment-rank-update.git
MPAD: A New Dimension-Reduction Method for Preserving Nearest Neighbors in High-Dimensional Vector Search
High-dimensional vector embeddings are widely used in retrieval systems, yet dimensionality reduction (DR) is seldom applied due to its tendency to distort nearest-neighbor (NN) structure critical for search. Existing DR techniques such as PCA and UMAP optimize global or manifold-preserving criteria, rather than retrieval-specific objectives. We present MPAD: Maximum Pairwise Absolute Difference, an unsupervised DR method that explicitly preserves approximate NN relations by maximizing the margin between k-NNs and non-k-NNs under a soft orthogonality constraint. This design enables MPAD to retain ANN-relevant geometry without supervision or changes to the original embedding model. Experiments across multiple domains show that MPAD consistently outperforms standard DR methods in preserving neighborhood structure, enabling more accurate search in reduced dimensions.
Progressive Gradient Flow for Robust N:M Sparsity Training in Transformers
N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions (sim50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions (>80\%). In this work, we study the effectiveness of existing sparse training recipes at high-sparsity regions and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2% and 5% in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2%. The source code is available at https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.
SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
Federated Recommendation with Additive Personalization
Building recommendation systems via federated learning (FL) is a new emerging challenge for advancing next-generation Internet service and privacy protection. Existing approaches train shared item embedding by FL while keeping the user embedding private on client side. However, item embedding identical for all clients cannot capture users' individual differences on perceiving the same item and thus leads to poor personalization. Moreover, dense item embedding in FL results in expensive communication cost and latency. To address these challenges, we propose Federated Recommendation with Additive Personalization (FedRAP), which learns a global view of items via FL and a personalized view locally on each user. FedRAP enforces sparsity of the global view to save FL's communication cost and encourages difference between the two views through regularization. We propose an effective curriculum to learn the local and global views progressively with increasing regularization weights. To produce recommendations for an user, FedRAP adds the two views together to obtain a personalized item embedding. FedRAP achieves the best performance in FL setting on multiple benchmarks. It outperforms recent federated recommendation methods and several ablation study baselines.
Tensor Networks for Explainable Machine Learning in Cybersecurity
In this paper we show how tensor networks help in developing explainability of machine learning algorithms. Specifically, we develop an unsupervised clustering algorithm based on Matrix Product States (MPS) and apply it in the context of a real use-case of adversary-generated threat intelligence. Our investigation proves that MPS rival traditional deep learning models such as autoencoders and GANs in terms of performance, while providing much richer model interpretability. Our approach naturally facilitates the extraction of feature-wise probabilities, Von Neumann Entropy, and mutual information, offering a compelling narrative for classification of anomalies and fostering an unprecedented level of transparency and interpretability, something fundamental to understand the rationale behind artificial intelligence decisions.
Scalable Transformer for PDE Surrogate Modeling
Transformer has shown state-of-the-art performance on various applications and has recently emerged as a promising tool for surrogate modeling of partial differential equations (PDEs). Despite the introduction of linear-complexity variant, applying attention to a large number of grid points can result in instability and is still expensive to compute. In this work, we propose Factorized Transformer(FactFormer), which is based on an axial factorized kernel integral. Concretely, we introduce a learnable projection operator that decomposes the input function into multiple sub-functions with one-dimensional domain. These sub-functions are then evaluated and used to compute the instance-based kernel with an axial factorized scheme. We showcase that the proposed model is able to simulate 2D Kolmogorov flow on a 256 by 256 grid and 3D smoke buoyancy on a 64 by 64 by 64 grid with good accuracy and efficiency. In addition, we find out that with the factorization scheme, the attention matrices enjoy a more compact spectrum than full softmax-free attention matrices.
Preference and Concurrence Aware Bayesian Graph Neural Networks for Recommender Systems
Graph-based collaborative filtering methods have prevailing performance for recommender systems since they can capture high-order information between users and items, in which the graphs are constructed from the observed user-item interactions that might miss links or contain spurious positive interactions in industrial scenarios. The Bayesian Graph Neural Network framework approaches this issue with generative models for the interaction graphs. The critical problem is to devise a proper family of graph generative models tailored to recommender systems. We propose an efficient generative model that jointly considers the preferences of users, the concurrence of items and some important graph structure information. Experiments on four popular benchmark datasets demonstrate the effectiveness of our proposed graph generative methods for recommender systems.
Representation Learning with Large Language Models for Recommendation
Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at https://github.com/HKUDS/RLMRec.
HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization
Sparse neural networks are a key factor in developing resource-efficient machine learning applications. We propose the novel and powerful sparse learning method Adaptive Regularized Training (ART) to compress dense into sparse networks. Instead of the commonly used binary mask during training to reduce the number of model weights, we inherently shrink weights close to zero in an iterative manner with increasing weight regularization. Our method compresses the pre-trained model knowledge into the weights of highest magnitude. Therefore, we introduce a novel regularization loss named HyperSparse that exploits the highest weights while conserving the ability of weight exploration. Extensive experiments on CIFAR and TinyImageNet show that our method leads to notable performance gains compared to other sparsification methods, especially in extremely high sparsity regimes up to 99.8 percent model sparsity. Additional investigations provide new insights into the patterns that are encoded in weights with high magnitudes.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
ClusterFuG: Clustering Fully connected Graphs by Multicut
We propose a graph clustering formulation based on multicut (a.k.a. weighted correlation clustering) on the complete graph. Our formulation does not need specification of the graph topology as in the original sparse formulation of multicut, making our approach simpler and potentially better performing. In contrast to unweighted correlation clustering we allow for a more expressive weighted cost structure. In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors. This allows for an efficient formulation and inference in contrast to multicut/weighted correlation clustering, which has at least quadratic representation and computation complexity when working on the complete graph. We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality. In particular, our algorithms scale to graphs with tens of thousands of nodes. Empirical evidence on instance segmentation on Cityscapes and clustering of ImageNet datasets shows the merits of our approach.
Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training
Deep neural networks have achieved great success in many data processing applications. However, the high computational complexity and storage cost makes deep learning hard to be used on resource-constrained devices, and it is not environmental-friendly with much power cost. In this paper, we focus on low-rank optimization for efficient deep learning techniques. In the space domain, deep neural networks are compressed by low rank approximation of the network parameters, which directly reduces the storage requirement with a smaller number of network parameters. In the time domain, the network parameters can be trained in a few subspaces, which enables efficient training for fast convergence. The model compression in the spatial domain is summarized into three categories as pre-train, pre-set, and compression-aware methods, respectively. With a series of integrable techniques discussed, such as sparse pruning, quantization, and entropy coding, we can ensemble them in an integration framework with lower computational complexity and storage. Besides of summary of recent technical advances, we have two findings for motivating future works: one is that the effective rank outperforms other sparse measures for network compression. The other is a spatial and temporal balance for tensorized neural networks.
Approximately Optimal Core Shapes for Tensor Decompositions
This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.
Grokking in Linear Estimators -- A Solvable Model that Groks without Understanding
Grokking is the intriguing phenomenon where a model learns to generalize long after it has fit the training data. We show both analytically and numerically that grokking can surprisingly occur in linear networks performing linear tasks in a simple teacher-student setup with Gaussian inputs. In this setting, the full training dynamics is derived in terms of the training and generalization data covariance matrix. We present exact predictions on how the grokking time depends on input and output dimensionality, train sample size, regularization, and network initialization. We demonstrate that the sharp increase in generalization accuracy may not imply a transition from "memorization" to "understanding", but can simply be an artifact of the accuracy measure. We provide empirical verification for our calculations, along with preliminary results indicating that some predictions also hold for deeper networks, with non-linear activations.
Cuttlefish: Low-Rank Model Training without All the Tuning
Recent research has shown that training low-rank neural networks can effectively reduce the total number of trainable parameters without sacrificing predictive accuracy, resulting in end-to-end speedups. However, low-rank model training necessitates adjusting several additional factorization hyperparameters, such as the rank of the factorization at each layer. In this paper, we tackle this challenge by introducing Cuttlefish, an automated low-rank training approach that eliminates the need for tuning factorization hyperparameters. Cuttlefish leverages the observation that after a few epochs of full-rank training, the stable rank (i.e., an approximation of the true rank) of each layer stabilizes at a constant value. Cuttlefish switches from full-rank to low-rank training once the stable ranks of all layers have converged, setting the dimension of each factorization to its corresponding stable rank. Our results show that Cuttlefish generates models up to 5.6 times smaller than full-rank models, and attains up to a 1.2 times faster end-to-end training process while preserving comparable accuracy. Moreover, Cuttlefish outperforms state-of-the-art low-rank model training methods and other prominent baselines. The source code for our implementation can be found at: https://github.com/hwang595/Cuttlefish.
Householder Projector for Unsupervised Latent Semantics Discovery
Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only 1% of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.
Learnable Item Tokenization for Generative Recommendation
Utilizing powerful Large Language Models (LLMs) for generative recommendation has attracted much attention. Nevertheless, a crucial challenge is transforming recommendation data into the language space of LLMs through effective item tokenization. Current approaches, such as ID, textual, and codebook-based identifiers, exhibit shortcomings in encoding semantic information, incorporating collaborative signals, or handling code assignment bias. To address these limitations, we propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity to satisfy the essential requirements of identifiers. LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias. We instantiate LETTER on two models and propose a ranking-guided generation loss to augment their ranking ability theoretically. Experiments on three datasets validate the superiority of LETTER, advancing the state-of-the-art in the field of LLM-based generative recommendation.
Robust Hyperspectral Unmixing with Correntropy based Metric
Hyperspectral unmixing is one of the crucial steps for many hyperspectral applications. The problem of hyperspectral unmixing has proven to be a difficult task in unsupervised work settings where the endmembers and abundances are both unknown. What is more, this task becomes more challenging in the case that the spectral bands are degraded with noise. This paper presents a robust model for unsupervised hyperspectral unmixing. Specifically, our model is developed with the correntropy based metric where the non-negative constraints on both endmembers and abundances are imposed to keep physical significance. In addition, a sparsity prior is explicitly formulated to constrain the distribution of the abundances of each endmember. To solve our model, a half-quadratic optimization technique is developed to convert the original complex optimization problem into an iteratively re-weighted NMF with sparsity constraints. As a result, the optimization of our model can adaptively assign small weights to noisy bands and give more emphasis on noise-free bands. In addition, with sparsity constraints, our model can naturally generate sparse abundances. Experiments on synthetic and real data demonstrate the effectiveness of our model in comparison to the related state-of-the-art unmixing models.
DoTA: Weight-Decomposed Tensor Adaptation for Large Language Models
Low-rank adaptation (LoRA) reduces the computational and memory demands of fine-tuning large language models (LLMs) by approximating updates with low-rank matrices. However, low-rank approximation in two-dimensional space fails to capture high-dimensional structures within the target matrix. Recently, tensor decomposition methods have been explored for fine-tuning LLMs, leveraging their ability to extract structured information. Yet, these approaches primarily rely on random initialization, and the impact of initialization on tensor adaptation remains underexplored. In this paper, we reveal that random initialization significantly diverges from the validation loss achieved by full fine-tuning. To address this, we propose Weight-Decomposed Tensor Adaptation (DoTA), which leverages the Matrix Product Operator (MPO) decomposition of pre-trained weights for effective initialization in fine-tuning LLMs. Additionally, we introduce QDoTA, a quantized version of DoTA designed for 4-bit quantization. Experiments on commonsense and arithmetic reasoning tasks show that DoTA outperforms random initialization methods with fewer parameters. QDoTA further reduces memory consumption and achieves comparable performance to DoTA on commonsense reasoning tasks. We will release our code to support future research.
Multi Resolution Analysis (MRA) for Approximate Self-Attention
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.
The Fast Johnson-Lindenstrauss Transform is Even Faster
The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of n points in d-dimensional Euclidean space into optimal k=O(varepsilon^{-2} ln n) dimensions, while preserving all pairwise distances to within a factor (1 pm varepsilon). The Fast JL transform supports computing the embedding of a data point in O(d ln d +k ln^2 n) time, where the d ln d term comes from multiplication with a d times d Hadamard matrix and the k ln^2 n term comes from multiplication with a sparse k times d matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between varepsilon, d and n. In this work, we give a surprising new analysis of the Fast JL transform, showing that the k ln^2 n term in the embedding time can be improved to (k ln^2 n)/alpha for an alpha = Omega(min{varepsilon^{-1}ln(1/varepsilon), ln n}). The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight.
Deep metric learning using Triplet network
Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
A Survey of Graph Neural Networks for Social Recommender Systems
Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.
CRISP: Clustering Multi-Vector Representations for Denoising and Pruning
Multi-vector models, such as ColBERT, are a significant advancement in neural information retrieval (IR), delivering state-of-the-art performance by representing queries and documents by multiple contextualized token-level embeddings. However, this increased representation size introduces considerable storage and computational overheads which have hindered widespread adoption in practice. A common approach to mitigate this overhead is to cluster the model's frozen vectors, but this strategy's effectiveness is fundamentally limited by the intrinsic clusterability of these embeddings. In this work, we introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel multi-vector training method which learns inherently clusterable representations directly within the end-to-end training process. By integrating clustering into the training phase rather than imposing it post-hoc, CRISP significantly outperforms post-hoc clustering at all representation sizes, as well as other token pruning methods. On the BEIR retrieval benchmarks, CRISP achieves a significant rate of ~3x reduction in the number of vectors while outperforming the original unpruned model. This indicates that learned clustering effectively denoises the model by filtering irrelevant information, thereby generating more robust multi-vector representations. With more aggressive clustering, CRISP achieves an 11x reduction in the number of vectors with only a 3.6% quality loss.