1 ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%. 13 authors · Feb 20, 2024 1
- AceGPT, Localizing Large Language Models in Arabic This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed 'AceGPT', sets the state-of-the-art standard for open Arabic LLMs across various benchmarks, including the instruction-following benchmark (i.e., Arabic Vicuna-80 and Arabic AlpacaEval), knowledge benchmark (i.e., Arabic MMLU and EXAMs), and the newly introduced Arabic Cultural and Value Alignment benchmark. Notably, AceGPT outperforms Turbo in the popular Vicuna-80 benchmark when evaluated with GPT-4, despite the benchmark's limited scale. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT. 20 authors · Sep 21, 2023