File size: 3,623 Bytes
8673153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: math_question_grade_detection_Bert_databalanced_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# math_question_grade_detection_Bert_databalanced_v2

This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5945
- Accuracy: 0.8127
- Precision: 0.8116
- Recall: 0.8127
- F1: 0.8110

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0.2817 | 50   | 2.1406          | 0.1698   | 0.1183    | 0.1698 | 0.1327 |
| No log        | 0.5634 | 100  | 1.8833          | 0.3540   | 0.3387    | 0.3540 | 0.2911 |
| No log        | 0.8451 | 150  | 1.5465          | 0.4365   | 0.4580    | 0.4365 | 0.4060 |
| No log        | 1.1268 | 200  | 1.2969          | 0.4937   | 0.4950    | 0.4937 | 0.4471 |
| No log        | 1.4085 | 250  | 1.0146          | 0.6143   | 0.6253    | 0.6143 | 0.5906 |
| No log        | 1.6901 | 300  | 0.8713          | 0.6778   | 0.6771    | 0.6778 | 0.6476 |
| No log        | 1.9718 | 350  | 0.7740          | 0.7016   | 0.7000    | 0.7016 | 0.6896 |
| No log        | 2.2535 | 400  | 0.7760          | 0.6968   | 0.7068    | 0.6968 | 0.6872 |
| No log        | 2.5352 | 450  | 0.6579          | 0.7619   | 0.7726    | 0.7619 | 0.7590 |
| 1.2792        | 2.8169 | 500  | 0.6872          | 0.7429   | 0.7571    | 0.7429 | 0.7418 |
| 1.2792        | 3.0986 | 550  | 0.6073          | 0.7698   | 0.7783    | 0.7698 | 0.7700 |
| 1.2792        | 3.3803 | 600  | 0.6297          | 0.7714   | 0.7840    | 0.7714 | 0.7718 |
| 1.2792        | 3.6620 | 650  | 0.6160          | 0.7762   | 0.7764    | 0.7762 | 0.7731 |
| 1.2792        | 3.9437 | 700  | 0.5895          | 0.8111   | 0.8147    | 0.8111 | 0.8110 |
| 1.2792        | 4.2254 | 750  | 0.5717          | 0.8111   | 0.8087    | 0.8111 | 0.8089 |
| 1.2792        | 4.5070 | 800  | 0.5767          | 0.8095   | 0.8126    | 0.8095 | 0.8083 |
| 1.2792        | 4.7887 | 850  | 0.5898          | 0.8016   | 0.8029    | 0.8016 | 0.7995 |
| 1.2792        | 5.0704 | 900  | 0.5908          | 0.8127   | 0.8143    | 0.8127 | 0.8115 |
| 1.2792        | 5.3521 | 950  | 0.5972          | 0.8111   | 0.8136    | 0.8111 | 0.8102 |
| 0.304         | 5.6338 | 1000 | 0.5945          | 0.8127   | 0.8116    | 0.8127 | 0.8110 |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3