Update pipeline tag and add library name (#1)
Browse files- Update pipeline tag and add library name (461945255a99b90531350d9f3d53480ccda693e7)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,129 +1,26 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
4 |
-
|
5 |
-
datasets:
|
6 |
-
- ILSVRC/imagenet-1k
|
7 |
-
pipeline_tag: image-feature-extraction
|
8 |
---
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
##
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
## Model Performance
|
18 |
-
|
19 |
-
MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
|
20 |
-
terms of Top-1 accuracy and throughput.
|
21 |
-
|
22 |
-
<p align="center">
|
23 |
-
<img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
|
24 |
-
class="center">
|
25 |
-
</p>
|
26 |
-
|
27 |
-
|
28 |
-
## Model Usage
|
29 |
-
|
30 |
-
It is highly recommended to install the requirements for MambaVision by running the following:
|
31 |
-
|
32 |
-
|
33 |
-
```Bash
|
34 |
-
pip install mambavision
|
35 |
```
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
<p align="center">
|
47 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
|
48 |
-
class="center">
|
49 |
-
</p>
|
50 |
-
|
51 |
-
|
52 |
-
The following snippet can be used for image classification:
|
53 |
-
|
54 |
-
```Python
|
55 |
-
from transformers import AutoModelForImageClassification
|
56 |
-
from PIL import Image
|
57 |
-
from timm.data.transforms_factory import create_transform
|
58 |
-
import requests
|
59 |
-
|
60 |
-
model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-B-1K", trust_remote_code=True)
|
61 |
-
|
62 |
-
# eval mode for inference
|
63 |
-
model.cuda().eval()
|
64 |
-
|
65 |
-
# prepare image for the model
|
66 |
-
url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
|
67 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
68 |
-
input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
|
69 |
-
|
70 |
-
transform = create_transform(input_size=input_resolution,
|
71 |
-
is_training=False,
|
72 |
-
mean=model.config.mean,
|
73 |
-
std=model.config.std,
|
74 |
-
crop_mode=model.config.crop_mode,
|
75 |
-
crop_pct=model.config.crop_pct)
|
76 |
-
|
77 |
-
inputs = transform(image).unsqueeze(0).cuda()
|
78 |
-
# model inference
|
79 |
-
outputs = model(inputs)
|
80 |
-
logits = outputs['logits']
|
81 |
-
predicted_class_idx = logits.argmax(-1).item()
|
82 |
-
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
83 |
-
```
|
84 |
-
|
85 |
-
The predicted label is ```brown bear, bruin, Ursus arctos.```
|
86 |
-
|
87 |
-
### Feature Extraction
|
88 |
-
|
89 |
-
MambaVision can also be used as a generic feature extractor.
|
90 |
-
|
91 |
-
Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
|
92 |
-
|
93 |
-
The following snippet can be used for feature extraction:
|
94 |
-
|
95 |
-
```Python
|
96 |
-
from transformers import AutoModel
|
97 |
-
from PIL import Image
|
98 |
-
from timm.data.transforms_factory import create_transform
|
99 |
-
import requests
|
100 |
-
|
101 |
-
model = AutoModel.from_pretrained("nvidia/MambaVision-B-1K", trust_remote_code=True)
|
102 |
-
|
103 |
-
# eval mode for inference
|
104 |
-
model.cuda().eval()
|
105 |
-
|
106 |
-
# prepare image for the model
|
107 |
-
url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
|
108 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
109 |
-
input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
|
110 |
-
|
111 |
-
transform = create_transform(input_size=input_resolution,
|
112 |
-
is_training=False,
|
113 |
-
mean=model.config.mean,
|
114 |
-
std=model.config.std,
|
115 |
-
crop_mode=model.config.crop_mode,
|
116 |
-
crop_pct=model.config.crop_pct)
|
117 |
-
inputs = transform(image).unsqueeze(0).cuda()
|
118 |
-
# model inference
|
119 |
-
out_avg_pool, features = model(inputs)
|
120 |
-
print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640])
|
121 |
-
print("Number of stages in extracted features:", len(features)) # 4 stages
|
122 |
-
print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56])
|
123 |
-
print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
|
124 |
-
```
|
125 |
-
|
126 |
-
|
127 |
-
### License:
|
128 |
-
|
129 |
-
[NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-T-1K/blob/main/LICENSE)
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- video-text-to-text
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
+
This repository contains the data for the paper [PAVE: Patching and Adapting Video Large Language Models](https://arxiv.org/abs/2503.19794).
|
8 |
|
9 |
+
Code: https://github.com/dragonlzm/PAVE
|
10 |
|
11 |
+
## Citation [optional]
|
12 |
+
arxiv.org/abs/2503.19794
|
13 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
14 |
|
15 |
+
**BibTeX:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
```
|
17 |
+
@misc{liu2025pavepatchingadaptingvideo,
|
18 |
+
title={PAVE: Patching and Adapting Video Large Language Models},
|
19 |
+
author={Zhuoming Liu and Yiquan Li and Khoi Duc Nguyen and Yiwu Zhong and Yin Li},
|
20 |
+
year={2025},
|
21 |
+
eprint={2503.19794},
|
22 |
+
archivePrefix={arXiv},
|
23 |
+
primaryClass={cs.CV},
|
24 |
+
url={https://arxiv.org/abs/2503.19794},
|
25 |
+
}
|
26 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|