ahatamiz nielsr HF Staff commited on
Commit
0245cef
·
verified ·
1 Parent(s): 75bece0

Update pipeline tag and add library name (#1)

Browse files

- Update pipeline tag and add library name (461945255a99b90531350d9f3d53480ccda693e7)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +19 -122
README.md CHANGED
@@ -1,129 +1,26 @@
1
  ---
2
- license: other
3
- license_name: nvclv1
4
- license_link: LICENSE
5
- datasets:
6
- - ILSVRC/imagenet-1k
7
- pipeline_tag: image-feature-extraction
8
  ---
9
 
 
10
 
11
- [**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083).
12
 
13
- ## Model Overview
 
 
14
 
15
- We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria.
16
-
17
- ## Model Performance
18
-
19
- MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
20
- terms of Top-1 accuracy and throughput.
21
-
22
- <p align="center">
23
- <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
24
- class="center">
25
- </p>
26
-
27
-
28
- ## Model Usage
29
-
30
- It is highly recommended to install the requirements for MambaVision by running the following:
31
-
32
-
33
- ```Bash
34
- pip install mambavision
35
  ```
36
-
37
- For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
38
-
39
- ### Image Classification
40
-
41
- In the following example, we demonstrate how MambaVision can be used for image classification.
42
-
43
- Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
44
-
45
-
46
- <p align="center">
47
- <img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
48
- class="center">
49
- </p>
50
-
51
-
52
- The following snippet can be used for image classification:
53
-
54
- ```Python
55
- from transformers import AutoModelForImageClassification
56
- from PIL import Image
57
- from timm.data.transforms_factory import create_transform
58
- import requests
59
-
60
- model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-B-1K", trust_remote_code=True)
61
-
62
- # eval mode for inference
63
- model.cuda().eval()
64
-
65
- # prepare image for the model
66
- url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
67
- image = Image.open(requests.get(url, stream=True).raw)
68
- input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
69
-
70
- transform = create_transform(input_size=input_resolution,
71
- is_training=False,
72
- mean=model.config.mean,
73
- std=model.config.std,
74
- crop_mode=model.config.crop_mode,
75
- crop_pct=model.config.crop_pct)
76
-
77
- inputs = transform(image).unsqueeze(0).cuda()
78
- # model inference
79
- outputs = model(inputs)
80
- logits = outputs['logits']
81
- predicted_class_idx = logits.argmax(-1).item()
82
- print("Predicted class:", model.config.id2label[predicted_class_idx])
83
- ```
84
-
85
- The predicted label is ```brown bear, bruin, Ursus arctos.```
86
-
87
- ### Feature Extraction
88
-
89
- MambaVision can also be used as a generic feature extractor.
90
-
91
- Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
92
-
93
- The following snippet can be used for feature extraction:
94
-
95
- ```Python
96
- from transformers import AutoModel
97
- from PIL import Image
98
- from timm.data.transforms_factory import create_transform
99
- import requests
100
-
101
- model = AutoModel.from_pretrained("nvidia/MambaVision-B-1K", trust_remote_code=True)
102
-
103
- # eval mode for inference
104
- model.cuda().eval()
105
-
106
- # prepare image for the model
107
- url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
108
- image = Image.open(requests.get(url, stream=True).raw)
109
- input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
110
-
111
- transform = create_transform(input_size=input_resolution,
112
- is_training=False,
113
- mean=model.config.mean,
114
- std=model.config.std,
115
- crop_mode=model.config.crop_mode,
116
- crop_pct=model.config.crop_pct)
117
- inputs = transform(image).unsqueeze(0).cuda()
118
- # model inference
119
- out_avg_pool, features = model(inputs)
120
- print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640])
121
- print("Number of stages in extracted features:", len(features)) # 4 stages
122
- print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56])
123
- print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
124
- ```
125
-
126
-
127
- ### License:
128
-
129
- [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-T-1K/blob/main/LICENSE)
 
1
  ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - video-text-to-text
 
 
 
5
  ---
6
 
7
+ This repository contains the data for the paper [PAVE: Patching and Adapting Video Large Language Models](https://arxiv.org/abs/2503.19794).
8
 
9
+ Code: https://github.com/dragonlzm/PAVE
10
 
11
+ ## Citation [optional]
12
+ arxiv.org/abs/2503.19794
13
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
14
 
15
+ **BibTeX:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ```
17
+ @misc{liu2025pavepatchingadaptingvideo,
18
+ title={PAVE: Patching and Adapting Video Large Language Models},
19
+ author={Zhuoming Liu and Yiquan Li and Khoi Duc Nguyen and Yiwu Zhong and Yin Li},
20
+ year={2025},
21
+ eprint={2503.19794},
22
+ archivePrefix={arXiv},
23
+ primaryClass={cs.CV},
24
+ url={https://arxiv.org/abs/2503.19794},
25
+ }
26
+ ```