Eagle2-2B / configuration_eagle2_5_vl.py
Zhiding's picture
upload model arch
3ab0a53
# --------------------------------------------------------
# NVIDIA
# Copyright (c) 2025 NVIDIA
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import copy
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.siglip.configuration_siglip import SiglipVisionConfig
logger = logging.get_logger(__name__)
class Eagle2_5_VLConfig(PretrainedConfig):
model_type = 'eagle_2_5_vl'
is_composition = True
sub_configs = {"vision_config": SiglipVisionConfig, "text_config": Qwen2Config}
def __init__(
self,
vision_config=None,
text_config=None,
use_backbone_lora=0,
use_llm_lora=0,
pad2square=False,
select_layer=-4,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
loss_version='v1',
min_dynamic_tiles=1,
max_dynamic_tiles=6,
mlp_checkpoint=False,
initializer_range=0.02,
_attn_implementation='flash_attention_2',
_attn_implementation_autoset=False,
llm_config=None,
image_token_index=None,
**kwargs):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {'model_type': 'siglip_vision_model'}
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
if text_config is None:
text_config = {'architectures': ['Qwen2ForCausalLM']}
logger.info('text_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
if vision_config['model_type'] == 'siglip_vision_model':
self.vision_config = SiglipVisionConfig(**vision_config)
else:
raise ValueError('Unsupported model_type: {}'.format(vision_config['model_type']))
if text_config['architectures'][0] == 'LlamaForCausalLM':
self.text_config = LlamaConfig(**text_config)
elif text_config['architectures'][0] == 'Qwen2ForCausalLM':
self.text_config = Qwen2Config(**text_config)
else:
raise ValueError('Unsupported architecture: {}'.format(text_config['architectures'][0]))
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.mlp_checkpoint = mlp_checkpoint
self.pad2square = pad2square
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.loss_version = loss_version
self.initializer_range = initializer_range
self.min_dynamic_tiles = min_dynamic_tiles
self.max_dynamic_tiles = max_dynamic_tiles
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self._attn_implementation = _attn_implementation
self._attn_implementation_autoset = _attn_implementation_autoset
self.image_token_index = image_token_index
logger.info(f'min_dynamic_tiles: {self.min_dynamic_tiles}')
logger.info(f'max_dynamic_tiles: {self.max_dynamic_tiles}')
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['text_config'] = self.text_config.to_dict()
output['model_type'] = self.__class__.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['pad2square'] = self.pad2square
output['select_layer'] = self.select_layer
output['force_image_size'] = self.force_image_size
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
output['dynamic_image_size'] = self.dynamic_image_size
output['use_thumbnail'] = self.use_thumbnail
output['min_dynamic_tiles'] = self.min_dynamic_tiles
output['max_dynamic_tiles'] = self.max_dynamic_tiles
output['tie_word_embeddings'] = self.tie_word_embeddings
output['_attn_implementation'] = self._attn_implementation
output['_attn_implementation_autoset'] = self._attn_implementation_autoset
return output