File size: 35,692 Bytes
08b8b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Eagle2_5_VL.
copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/processing_llava_onevision.py
"""
import math
import os
from typing import Iterable, List, Union, Literal
import base64
import sys
import time
import warnings
from functools import lru_cache
from io import BytesIO
import re
import requests
import torch
import torchvision
from packaging import version
from PIL import Image
from torchvision import io
from typing import Optional, Any
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_processing_utils import select_best_resolution
from transformers.image_utils import ImageInput, VideoInput, get_image_size, to_numpy_array
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.models.auto import AutoImageProcessor
logger = logging.get_logger(__name__)
FRAME_FACTOR = 2
FPS = 2.0
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 256
def adjust_by_factor(number: int, factor: int, method: Literal['round', 'ceil', 'floor'] = 'round') -> int:
"""Adjusts 'number' to the nearest, ceiling, or floor multiple of 'factor'."""
op = {'round': round, 'ceil': math.ceil, 'floor': math.floor}[method]
return op(number / factor) * factor
def to_rgb(pil_image: Image.Image) -> Image.Image:
if pil_image.mode == 'RGBA':
white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
return white_background
else:
return pil_image.convert("RGB")
def fetch_image(ele: dict[str, str | Image.Image]) -> Image.Image:
if "image" in ele:
image = ele["image"]
else:
image = ele["image_url"]
image_obj = None
if isinstance(image, Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
response = requests.get(image, stream=True)
image_obj = Image.open(BytesIO(response.content))
elif image.startswith("file://"):
image_obj = Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = Image.open(BytesIO(data))
else:
image_obj = Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = to_rgb(image_obj)
if 'scale_factor' in ele:
scale_factor = ele['scale_factor']
image = image.resize((image.width * scale_factor, image.height * scale_factor), Image.BILINEAR)
return image
def smart_nframes(
ele: dict,
total_frames: int,
video_fps: int | float,
) -> int:
"""calculate the number of frames for video used for model inputs.
Args:
ele (dict): a dict contains the configuration of video.
support either `fps` or `nframes`:
- nframes: the number of frames to extract for model inputs.
- fps: the fps to extract frames for model inputs.
- min_frames: the minimum number of frames of the video, only used when fps is provided.
- max_frames: the maximum number of frames of the video, only used when fps is provided.
total_frames (int): the original total number of frames of the video.
video_fps (int | float): the original fps of the video.
Raises:
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
Returns:
int: the number of frames for video used for model inputs.
"""
assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
if "nframes" in ele:
nframes = adjust_by_factor(ele["nframes"], FRAME_FACTOR, method='round')
else:
fps = ele.get("fps", FPS)
min_frames = adjust_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR, method='ceil')
max_frames = adjust_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR, method='floor')
nframes = total_frames / video_fps * fps
if nframes > total_frames:
logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]")
nframes = min(min(max(nframes, min_frames), max_frames), total_frames)
nframes = adjust_by_factor(nframes, FRAME_FACTOR, method='floor')
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
nframes = total_frames
# raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
return nframes
def _read_video_torchvision(
ele: dict,
) -> (torch.Tensor, float, list):
"""read video using torchvision.io.read_video and return also per-frame timestamps"""
video_path = ele["video"]
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
if "http://" in video_path or "https://" in video_path:
warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
if "file://" in video_path:
video_path = video_path[7:]
st = time.time()
video, audio, info = io.read_video(
video_path,
start_pts=ele.get("video_start", 0.0),
end_pts=ele.get("video_end", None),
pts_unit="sec",
output_format="TCHW",
)
total_frames, video_fps = video.size(0), info["video_fps"]
logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
# Calculate frame indices and corresponding timestamps (based on video start time)
idx = torch.linspace(0, total_frames - 1, nframes).round().long()
start_time = ele.get("video_start", 0.0)
timestamps = (start_time + idx.to(torch.float32) / video_fps).tolist()
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
video = video[idx]
return video, sample_fps, timestamps
def is_decord_available() -> bool:
import importlib.util
return importlib.util.find_spec("decord") is not None
def _read_video_decord(
ele: dict,
) -> (torch.Tensor, float, list):
"""read video using decord.VideoReader and return also per-frame timestamps"""
import decord
video_path = ele["video"]
st = time.time()
vr = decord.VideoReader(video_path)
if 'video_start' in ele or 'video_end' in ele:
raise NotImplementedError("not support start_pts and end_pts in decord for now.")
total_frames, video_fps = len(vr), vr.get_avg_fps()
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
start_time = ele.get("video_start", 0.0) # TODO:
timestamps = [start_time + i / video_fps for i in idx]
video = vr.get_batch(idx).asnumpy()
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
return video, sample_fps, timestamps
VIDEO_READER_BACKENDS = {
"decord": _read_video_decord,
"torchvision": _read_video_torchvision,
}
@lru_cache(maxsize=1)
def get_video_reader_backend() -> str:
if is_decord_available():
video_reader_backend = "decord"
else:
video_reader_backend = "torchvision"
return video_reader_backend
def fetch_video(ele: dict, return_video_sample_fps: bool = False) -> torch.Tensor | list[Image.Image]:
if isinstance(ele["video"], str):
video_reader_backend = get_video_reader_backend()
try:
video, sample_fps, timestamps = VIDEO_READER_BACKENDS[video_reader_backend](ele)
except Exception as e:
logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}")
video, sample_fps, timestamps = VIDEO_READER_BACKENDS["torchvision"](ele)
nframes, _, height, width = video.shape
if return_video_sample_fps:
return video, sample_fps, timestamps
return video
else:
assert isinstance(ele["video"], (list, tuple))
process_info = ele.copy()
process_info.pop("type", None)
process_info.pop("video", None)
images = [
fetch_image({"image": video_element, **process_info})
for video_element in ele["video"]
]
nframes = adjust_by_factor(len(images), FRAME_FACTOR, method='ceil')
if len(images) < nframes:
images.extend([images[-1]] * (nframes - len(images)))
timestamps = [-1 for i in range(nframes)] # not sure about this
if return_video_sample_fps:
return images, process_info.pop("fps", 2.0), timestamps
return images
class Eagle2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
# see processing_utils.ProcessingKwargs documentation for usage.
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
"videos_kwargs": {"max_dynamic_tiles": 1},
}
class Eagle2_5_VLProcessor(ProcessorMixin):
r"""
Constructs a Eagle2_5_VL processor which wraps a Eagle2_5_VL video processor, Eagle2_5_VL image processor and a Eagle2_5_VL tokenizer into a single processor.
[`Eagle2_5_VLProcessor`] offers all the functionalities of [`Eagle2_5_VLVideoProcessor`], [`Eagle2_5_VLImageProcessor`] and [`Eagle2_5_VLTokenizer`]. See the
[`~Eagle2_5_VLVideoProcessor.__call__`], [`~Eagle2_5_VLProcessor.__call__`] and [`~Eagle2_5_VLProcessor.decode`] for more information.
Args:
image_processor ([`LlavaOnevisionImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
num_image_tokens (`int`, *optional*):
Number of image tokens for one imagethat will be returned by vision tower.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Shoudl be same as in model's config
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"<image>"`):
Special token used to denote image location.
video_token (`str`, *optional*, defaults to `"<video>"`):
Special token used to denote video location.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"num_image_tokens",
"vision_feature_select_strategy",
"image_token",
"video_token",
"images_kwargs",
"videos_kwargs",
"text_kwargs",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
vision_feature_select_strategy=None,
chat_template=None,
image_token='<IMG_CONTEXT>',
video_token='<IMG_CONTEXT>',
tokens_per_tile=256,
image_placeholder='image',
video_placeholder='video',
image_start_token='<img>',
image_end_token='</img>',
**kwargs,
):
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.convert_tokens_to_ids(self.image_token)
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.convert_tokens_to_ids(self.video_token)
)
self.image_placeholder = image_placeholder
self.video_placeholder = video_placeholder
self.tokens_per_tile = tokens_per_tile
self.image_start_token = image_start_token
self.image_end_token = image_end_token
if 'auto_map' in kwargs:
self.auto_map = kwargs['auto_map']
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def replace_media_placeholder(self, text, image_list, video_list, timestamps_list, fps_list, **output_kwargs):
num_of_images_in_this_sample = 0
num_of_videos_in_this_sample = 0
# Regular expression pattern to match formats like <image-1> or <video-2>
pattern = re.compile(rf"<({self.image_placeholder}|{self.video_placeholder})-(\d+)>")
unified_frame_list = []
image_min_dynamic_tiles = output_kwargs['images_kwargs'].get("min_dynamic_tiles", self.image_processor.min_dynamic_tiles)
image_max_dynamic_tiles = output_kwargs['images_kwargs'].get("max_dynamic_tiles", self.image_processor.max_dynamic_tiles)
image_use_thumbnail = output_kwargs['images_kwargs'].get("use_thumbnail", self.image_processor.use_thumbnail)
video_min_dynamic_tiles = output_kwargs['videos_kwargs'].get("min_dynamic_tiles", self.image_processor.min_dynamic_tiles)
video_max_dynamic_tiles = output_kwargs['videos_kwargs'].get("max_dynamic_tiles", self.image_processor.max_dynamic_tiles)
video_use_thumbnail = output_kwargs['videos_kwargs'].get("use_thumbnail", self.image_processor.use_thumbnail)
tile_size = self.image_processor.size.get("height", 448)
# Function to replace tags in a single text
def replace_in_text(text):
# repl callback function for each match replacement operation
def repl(match):
nonlocal unified_frame_list
nonlocal num_of_images_in_this_sample
nonlocal num_of_videos_in_this_sample
media_type = match.group(1) # 'image' or 'video'
idx_in_list = int(match.group(2)) - 1 # Convert to list index (0-based)
# Select the corresponding path based on media type
idx_mapper = {0: "first", 1: "second", 2: "third", 3: "fourth", 4: "fifth", 5: "sixth", 6: "seventh", 7: "eighth", 8: "ninth", 9: "tenth"}
if media_type == 'image':
image_inputs = self.image_processor(images=[image_list[idx_in_list]], videos=None, **output_kwargs["images_kwargs"])
num_all_tiles = image_inputs["pixel_values"].shape[0]
special_placeholder = f"<image {idx_in_list+1}>{self.image_start_token}{self.image_token * num_all_tiles * self.tokens_per_tile}{self.image_end_token}"
unified_frame_list.append(image_inputs)
num_of_images_in_this_sample += 1
elif media_type == 'video':
video_inputs = self.image_processor(images=None, videos=[video_list[idx_in_list]], **output_kwargs["videos_kwargs"])
num_all_tiles = video_inputs["pixel_values"].shape[0]
image_sizes = video_inputs["image_sizes"]
if timestamps_list is not None and -1 not in timestamps_list:
frame_timestamps = timestamps_list[idx_in_list]
else:
frame_timestamps = None
sampled_fps = fps_list[idx_in_list] if fps_list is not None else None
num_of_tiles_each_frame = [
self.get_number_tiles_based_on_image_size(image_size, video_min_dynamic_tiles, video_max_dynamic_tiles, video_use_thumbnail, tile_size)
for image_size in image_sizes
]
assert sum(num_of_tiles_each_frame) == num_all_tiles, f"The number of tiles in each frame is not equal to the total number of tiles: {sum(num_of_tiles_each_frame)} != {num_all_tiles}"
if frame_timestamps is not None:
assert len(frame_timestamps) == len(num_of_tiles_each_frame), f"The number of timestamps is not equal to the number of frames: {len(frame_timestamps)} != {len(num_of_tiles_each_frame)}"
special_placeholder = [f"Frame {i+1} sample at {frame_timestamps[i]:.2f}s: {self.image_start_token}{self.image_token * num_of_tiles * self.tokens_per_tile}{self.image_end_token}" for i, num_of_tiles in enumerate(num_of_tiles_each_frame)]
else:
special_placeholder = [f"Frame {i+1}: {self.image_start_token}{self.image_token * num_of_tiles * self.tokens_per_tile}{self.image_end_token}" for i, num_of_tiles in enumerate(num_of_tiles_each_frame)]
if sampled_fps is not None:
special_placeholder = f"The {idx_mapper[idx_in_list]} video sampled with {sampled_fps:.2f} fps: " + "".join(special_placeholder)
else:
special_placeholder = f"The {idx_mapper[idx_in_list]} video: " + "".join(special_placeholder)
unified_frame_list.append(video_inputs)
num_of_videos_in_this_sample += 1
else:
raise ValueError(f'Unknown media type: {media_type}')
return special_placeholder
return pattern.sub(repl, text)
text = replace_in_text(text)
if len(unified_frame_list) > 0:
pixel_values = torch.cat([frame["pixel_values"] for frame in unified_frame_list])
image_sizes = torch.cat([frame["image_sizes"] for frame in unified_frame_list])
else:
pixel_values = None
image_sizes = None
return text, pixel_values, image_sizes, num_of_images_in_this_sample, num_of_videos_in_this_sample
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos: VideoInput = None,
**kwargs: Unpack[Eagle2_5_VLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
- **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Eagle2_5_VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text_list = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
elif isinstance(text, list) and isinstance(text[0], str):
text_list = text
if images is None: images = []
if videos is None: videos = []
pixel_values_list = []
image_sizes_list = []
new_sample_list = []
image_start_idx = 0
video_start_idx = 0
timestamps_batch = output_kwargs['videos_kwargs'].pop("timestamps", None)
fps_batch = output_kwargs['videos_kwargs'].pop("fps", None)
for sample in text_list:
timestamps_list = timestamps_batch[video_start_idx:] if timestamps_batch is not None else None
fps_list = fps_batch[video_start_idx:] if fps_batch is not None else None
sample, pixel_values, image_sizes, num_of_images_in_this_sample, num_of_videos_in_this_sample = self.replace_media_placeholder(sample, images[image_start_idx:], videos[video_start_idx:], timestamps_list, fps_list, **output_kwargs)
new_sample_list.append(sample)
if pixel_values is not None:
pixel_values_list.append(pixel_values)
image_sizes_list.append(image_sizes)
image_start_idx += num_of_images_in_this_sample
video_start_idx += num_of_videos_in_this_sample
if len(pixel_values_list) > 0:
image_inputs = {"pixel_values": torch.cat(pixel_values_list), "image_sizes": torch.cat(image_sizes_list)}
else:
image_inputs = {}
video_inputs = {}
text_inputs = self.tokenizer(new_sample_list, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs})
def get_number_tiles_based_on_image_size(self, image_size: tuple, min_num: int, max_num: int, use_thumbnail: bool, tile_size: int) -> int:
"""
Get the number of tiles based on the image size.
"""
orig_height, orig_width = image_size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.image_processor.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, tile_size)
tiles_num = target_aspect_ratio[0] * target_aspect_ratio[1]
if use_thumbnail and tiles_num > 1:
tiles_num += 1
return tiles_num
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# override to save video-config in a separate config file
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
outputs = super().save_pretrained(save_directory, **kwargs)
return outputs
# override to load video-config from a separate config file
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
return processor
# Copy from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
def process_vision_info(
self,
conversations: list[dict] | list[list[dict]],
return_video_kwargs: bool = False,
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, Optional[dict]]:
vision_infos = self.extract_vision_info(conversations)
## Read images or videos
image_inputs = []
video_inputs = []
video_sample_fps_list = []
video_timestamps_list = []
for vision_info in vision_infos:
if "image" in vision_info or "image_url" in vision_info:
image_inputs.append(fetch_image(vision_info))
elif "video" in vision_info:
video_input, video_sample_fps, video_timestamps = fetch_video(vision_info, return_video_sample_fps=True)
video_sample_fps_list.append(video_sample_fps)
video_inputs.append(video_input)
video_timestamps_list.append(video_timestamps)
else:
raise ValueError("image, image_url or video should in content.")
if len(image_inputs) == 0:
image_inputs = None
if len(video_inputs) == 0:
video_inputs = None
if return_video_kwargs:
return image_inputs, video_inputs, {'fps': video_sample_fps_list, 'timestamps': video_timestamps_list}
return image_inputs, video_inputs
def extract_vision_info(self, conversations: list[dict] | list[list[dict]]) -> list[dict]:
vision_infos = []
if isinstance(conversations[0], dict):
conversations = [conversations]
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if (
"image" in ele
or "image_url" in ele
or "video" in ele
or ele["type"] in ("image", "image_url", "video")
):
vision_infos.append(ele)
return vision_infos
def py_apply_chat_template(self, messages, tokenize=False, add_generation_prompt=False):
"""
Renders a chat conversation using a custom template with verification of tokens.
The purpose is to check for the existence of tokens like "<image-1>" or "<video-1>"
in the message text and skip adding them if they already exist.
Args:
messages (list): A list of message dictionaries. Each message should contain:
- 'role': The role of the speaker (e.g., 'system', 'user', 'assistant').
- 'content': Either a string or a list of content blocks. In the list each block may contain:
* 'type': The type of content, such as 'image' or 'video'.
* 'text': The actual text if present.
* Other keys such as 'image', 'image_url', or 'video'.
add_generation_prompt (bool): If True, appends "<|im_start|>assistant" at the end of the rendered string.
tokenize (bool): If True, tokenize the rendered string.
Returns:
str: The final rendered chat string according to the specified template.
"""
assert tokenize == False, "tokenize is not supported yet"
result = ""
image_count = 0
video_count = 0
message_text = ""
for idx, message in enumerate(messages):
if message.get('role') != 'user': continue
# If content is a string, simply output it.
content = message.get('content')
if isinstance(content, str):
message_text += content
elif isinstance(content, list):
# Process each content item.
for item in content:
# If the block is a dictionary and contains text, add it to message_text.
if isinstance(item, dict) and "text" in item:
message_text += item["text"]
# If an item is already a string in the list, add it directly.
elif isinstance(item, str):
message_text += item
for idx, message in enumerate(messages):
# If the first message is not from the system, prepend a default system message.
if idx == 0 and message.get('role') != 'system':
result += "<|im_start|>system\n"
result += "You are a helpful assistant.\n"
result += "<|im_end|>\n"
# Start the current message block with its role.
result += f"<|im_start|>{message.get('role', '')}\n"
content = message.get('content')
# If content is a string, simply output it.
if isinstance(content, str):
result += content
result += "<|im_end|>\n"
else:
# Process each content item.
for item in content:
# Check if the item is an image (explicitly by type or by key presence).
if (isinstance(item, dict) and (item.get('type') == 'image' or 'image' in item or 'image_url' in item)):
image_count += 1
candidate_token = f"<image-{image_count}>"
# Only add the token if it is not already present in the collected text.
if candidate_token not in message_text:
result += candidate_token
# Check if the item is a video.
elif (isinstance(item, dict) and (item.get('type') == 'video' or 'video' in item)):
video_count += 1
candidate_token = f"<video-{video_count}>"
# Only add the token if it is not already present.
if candidate_token not in message_text:
result += candidate_token
# If the item contains text, add it.
elif isinstance(item, dict) and 'text' in item:
result += item['text']
# If the item is a string (and not handled already), add it.
elif isinstance(item, str):
result += item
result += "<|im_end|>\n"
# Optionally add assistant generation prompt at the end.
if add_generation_prompt:
result += "<|im_start|>assistant\n"
return result
@classmethod
def from_args_and_dict(cls, args, processor_dict: dict[str, Any], **kwargs):
"""
Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters.
Args:
processor_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the processor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~processing_utils.ProcessingMixin.to_dict`] method.
kwargs (`Dict[str, Any]`):
Additional parameters from which to initialize the processor object.
Returns:
[`~processing_utils.ProcessingMixin`]: The processor object instantiated from those
parameters.
"""
processor_dict = processor_dict.copy()
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
# We have to pop up some unused (but specific) kwargs and then validate that it doesn't contain unused kwargs
# If we don't pop, some specific kwargs will raise a warning
if "processor_class" in processor_dict:
del processor_dict["processor_class"]
#if "auto_map" in processor_dict:
# del processor_dict["auto_map"]
unused_kwargs = cls.validate_init_kwargs(processor_config=processor_dict, valid_kwargs=cls.valid_kwargs)
processor = cls(*args, **processor_dict)
# Update processor with kwargs if needed
for key in set(kwargs.keys()):
if hasattr(processor, key):
setattr(processor, key, kwargs.pop(key))
kwargs.update(unused_kwargs)
logger.info(f"Processor {processor}")
if return_unused_kwargs:
return processor, kwargs
else:
return processor
__all__ = ["Eagle2_5_VLProcessor"] |