File size: 16,245 Bytes
a5f8592
08b8b31
a5f8592
08b8b31
a5f8592
 
 
08b8b31
a5f8592
08b8b31
a5f8592
08b8b31
a5f8592
08b8b31
 
 
 
 
 
 
 
a5f8592
 
 
08b8b31
 
a5f8592
2d26211
a5f8592
 
08b8b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d26211
08b8b31
 
 
2d26211
 
08b8b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f8592
 
 
2d26211
 
 
a5f8592
 
 
08b8b31
 
 
a5f8592
08b8b31
a5f8592
 
 
 
08b8b31
a5f8592
08b8b31
 
a5f8592
 
 
 
08b8b31
 
 
 
 
a5f8592
08b8b31
a5f8592
 
08b8b31
2d26211
 
a5f8592
 
 
 
 
08b8b31
 
 
a5f8592
f9c61b1
 
 
08b8b31
f9c61b1
 
08b8b31
 
 
 
 
 
 
 
 
 
 
f9c61b1
 
 
08b8b31
 
f9c61b1
 
 
 
 
 
08b8b31
f9c61b1
 
 
 
 
 
 
 
 
 
 
08b8b31
 
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
08b8b31
a5f8592
 
 
 
 
 
 
 
 
 
 
2d26211
 
a5f8592
 
 
 
 
 
 
 
08b8b31
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b8b31
a5f8592
 
 
 
 
 
 
 
2d26211
 
 
08b8b31
a5f8592
 
 
 
 
08b8b31
2d26211
 
 
 
08b8b31
 
 
 
a5f8592
 
08b8b31
a5f8592
 
 
 
 
 
 
 
 
08b8b31
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
08b8b31
a5f8592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b8b31
 
a5f8592
 
08b8b31
 
 
 
 
 
a5f8592
08b8b31
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# --------------------------------------------------------
# NVIDIA
# Copyright (c) 2025 NVIDIA
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import warnings
import inspect
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import nn
import torch.distributed as dist
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM
from transformers.models.llama.modeling_llama import LlamaForCausalLM
import torch.utils.checkpoint as cp
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
from peft import LoraConfig, get_peft_model
from transformers.generation import GenerationMixin
from transformers import GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_eagle2_5_vl import Eagle2_5_VLConfig
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings

logger = logging.get_logger(__name__)


# copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/modeling_llava_onevision.py#L241C1-L280C1
EAGLE2_5_VL_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Eagle2_5_VLConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

@add_start_docstrings(
    "The bare Eagle2_5_VL Model outputting raw hidden-states without any specific head on top.",
    EAGLE2_5_VL_START_DOCSTRING,
)
class Eagle2_5_VLPreTrainedModel(PreTrainedModel):
    config_class = Eagle2_5_VLConfig
    base_model_prefix = "model"
    main_input_name = 'input_ids'
    supports_gradient_checkpointing = True
    _no_split_modules = ["Qwen2DecoderLayer", "LlamaDecoderLayer" ,"Siglip2EncoderLayer", "SiglipEncoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_cache_class = True
    _supports_static_cache = True
    _supports_quantized_cache = True
    _supports_sdpa = True
    
    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class Eagle2_5_VLForConditionalGeneration(Eagle2_5_VLPreTrainedModel, GenerationMixin):
    config_class = Eagle2_5_VLConfig
    def __init__(self, config: Eagle2_5_VLConfig, vision_model=None, language_model=None):
        super().__init__(config)

        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))

        self.select_layer = config.select_layer
        self.downsample_ratio = config.downsample_ratio
        self.loss_version = config.loss_version
        self.mlp_checkpoint = config.mlp_checkpoint
        
        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'mlp_checkpoint: {self.mlp_checkpoint}')
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            if config.vision_config.model_type == 'siglip_vision_model':
                config.vision_config._attn_implementation = 'flash_attention_2'
                self.vision_model = SiglipVisionModel(config.vision_config)
            else:
                raise NotImplementedError(f'{config.vision_config.model_type} is not implemented.')

        if language_model is not None:
            self.language_model = language_model
        else:
            if config.text_config.architectures[0] == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.text_config)
            elif config.text_config.architectures[0] == 'Qwen2ForCausalLM':
                # assert config.text_config._attn_implementation == 'flash_attention_2', f"Qwen2 must use flash_attention_2 but got {config.text_config._attn_implementation}"
                self.language_model = Qwen2ForCausalLM(config.text_config)
            else:
                raise NotImplementedError(f'{config.text_config.architectures[0]} is not implemented.')

        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.text_config.hidden_size

        self.mlp1 = nn.Sequential(
                nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
                nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
                nn.GELU(),
                nn.Linear(llm_hidden_size, llm_hidden_size)
            )
        self.image_token_index = config.image_token_index
        self.neftune_alpha = None


        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)

        self.use_llm_lora = config.use_llm_lora 
        if config.use_llm_lora:
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
            
        self.check_forward_kwargs()
        
    def check_forward_kwargs(self):
        # We intentionally avoid using **kwargs in forward because Hugging Face Transformers
        # has special handling for functions with **kwargs parameters that would affect
        # how our model is processed during training and inference.
        forward_params = inspect.signature(self.forward).parameters
        assert not any(k.kind == inspect.Parameter.VAR_KEYWORD for k in forward_params.values())

        
    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.out_proj',
                            'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                            'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.enable_input_require_grads()
        self.language_model.print_trainable_parameters()
        self.use_llm_lora = True
        
    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            num_tiles_list: Optional[List[torch.Tensor]] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids)

        vit_embeds = self.extract_feature(pixel_values)

        if not isinstance(image_flags, list):
            image_flags = image_flags.squeeze(-1)
            vit_embeds = vit_embeds[image_flags == 1]

        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        if torch.distributed.get_rank() == 0:
            print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.image_token_index)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))

        x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values):
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True)
            if hasattr(vit_embeds, 'last_hidden_state'):
                vit_embeds = vit_embeds.last_hidden_state
            
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) # torch.Size([B, 1024, 1024]) -> torch.Size([B, 16, 16, 4096])
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) # torch.Size([B, 16, 16, 4096]) -> torch.Size([B, 256, 4096])
        if self.mlp_checkpoint and vit_embeds.requires_grad:
            vit_embeds = cp.checkpoint(self.mlp1, vit_embeds)
        else:
            vit_embeds = self.mlp1(vit_embeds)

        return vit_embeds

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            image_sizes: Optional[List[Tuple[int, int]]] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values)

            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.config.image_token_index)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_input_embeddings
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_input_embeddings
    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_output_embeddings
    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_output_embeddings
    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_decoder
    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_decoder
    def get_decoder(self):
        return self.language_model.get_decoder()