File size: 18,553 Bytes
08b8b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# --------------------------------------------------------
# NVIDIA
# Copyright (c) 2025 NVIDIA
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
# copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/image_processing_llava_onevision_fast.py
from typing import List, Optional, Union
from transformers.image_processing_utils import BatchFeature, get_patch_output_size, select_best_resolution
from transformers.image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
divide_to_patches,
group_images_by_shape,
reorder_images,
)
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
IMAGENET_STANDARD_MEAN, # 0.5, 0.5, 0.5
IMAGENET_STANDARD_STD, # 0.5, 0.5, 0.5
ChannelDimension,
ImageInput,
VideoInput,
PILImageResampling,
SizeDict,
get_image_size,
make_flat_list_of_images,
make_batched_videos,
validate_kwargs
)
from transformers.processing_utils import Unpack
from transformers.utils import TensorType, add_start_docstrings, is_torch_available, is_torchvision_v2_available
if is_torch_available():
import torch
if is_torchvision_v2_available():
from transformers.image_utils import pil_torch_interpolation_mapping
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
def crop(img: torch.Tensor, left: int, top: int, right: int, bottom: int) -> torch.Tensor:
"""Crop the given numpy array.
Args:
img (torch.Tensor): Image to be cropped. Format should be (C, H, W).
left (int): The left coordinate of the crop box.
top (int): The top coordinate of the crop box.
right (int): The right coordinate of the crop box.
bottom (int): The bottom coordinate of the crop box.
Returns:
torch.Tensor: Cropped image.
"""
if not isinstance(img, torch.Tensor):
raise TypeError('img should be torch.Tensor. Got {}'.format(type(img)))
if img.ndim not in [2, 3]:
raise ValueError('Image should have 2 or 3 dimensions. Got {}'.format(img.ndim))
img_height = img.shape[1]
img_width = img.shape[2]
if top < 0 or left < 0 or bottom > img_height or right > img_width:
raise ValueError('Crop coordinates out of bounds')
if top >= bottom or left >= right:
raise ValueError('Invalid crop coordinates')
return img[:, top:bottom, left:right]
class Eagle2_5_VLFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
max_dynamic_tiles: Optional[int]
min_dynamic_tiles: Optional[int]
use_thumbnail: Optional[bool]
pad_during_tiling: Optional[bool]
do_pad: Optional[bool]
@add_start_docstrings(
"Constructs a fast ConvNeXT image processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
image_grid_pinpoints (`List[List[int]]`, *optional*):
A list of possible resolutions to use for processing high resolution images. The best resolution is selected
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
method. Not used for processing videos.
do_pad (`bool`, *optional*):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
""",
)
class Eagle2_5_VLImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 448, "width": 448}
default_to_square = False
crop_size = None
do_resize = True
do_center_crop = None
do_rescale = True
do_normalize = True
do_convert_rgb = True
do_pad = True
max_dynamic_tiles = 12
min_dynamic_tiles = 1
use_thumbnail = True
pad_during_tiling = False
valid_kwargs = Eagle2_5_VLFastImageProcessorKwargs
model_input_names = ["pixel_values_videos"]
def __init__(self, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]):
super().__init__(**kwargs)
@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
max_dynamic_tiles (`int`, *optional*):
The maximum number of dynamic tiles to use for processing high resolution images.
min_dynamic_tiles (`int`, *optional*):
The minimum number of dynamic tiles to use for processing high resolution images.
use_thumbnail (`bool`, *optional*):
Whether to use a thumbnail for processing high resolution images.
pad_during_tiling (`bool`, *optional*):
Whether to pad the image during tiling.
do_pad (`bool`, *optional*):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
""",
)
def preprocess(self, images: ImageInput, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]) -> BatchFeature:
return super().preprocess(images, **kwargs)
def _prepare_images_structure(
self,
images: ImageInput,
) -> ImageInput:
"""
Prepare the images structure for processing.
Args:
images (`ImageInput`):
The input images to process.
Returns:
`ImageInput`: The images with a valid nesting.
"""
return make_flat_list_of_images(images)
def _prepare_videos_structure(self, videos: VideoInput) -> VideoInput:
return self._prepare_images_structure(videos)
def _prepare_input_videos(
self,
videos: VideoInput,
do_convert_rgb: Optional[bool] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
device: Optional["torch.device"] = None,
) -> list["torch.Tensor"]:
"""
Prepare the input images for processing.
"""
videos = self._prepare_videos_structure(videos)
process_video_fn = partial(
self._process_image,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
device=device,
)
# todo: yoni - check if we can parallelize this efficiently
processed_videos = []
for video in videos:
processed_videos.append(process_video_fn(video))
return processed_videos
def _resize_for_patching(
self,
image: "torch.Tensor",
target_resolution: tuple,
interpolation: "F.InterpolationMode",
input_data_format: ChannelDimension,
) -> "torch.Tensor":
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image ("torch.Tensor"):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
interpolation (`InterpolationMode`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
"torch.Tensor": The resized and padded image.
"""
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation)
return resized_image
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
"""
previous version mainly foucs on ratio.
We also consider area ratio here.
"""
best_factor = float('-inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
"""
new area > 60% of original image area is enough.
"""
factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
if factor_based_on_area_n_ratio > best_factor:
best_factor = factor_based_on_area_n_ratio
best_ratio = ratio
return best_ratio
def _pad_for_patching(
self, image: "torch.Tensor", target_resolution: tuple, input_data_format: ChannelDimension
) -> "torch.Tensor":
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = F.pad(image, padding=[paste_x, paste_y, paste_x, paste_y])
return padded_image
def _get_image_patches(
self,
image: "torch.Tensor",
min_num: int,
max_num: int,
size: tuple,
tile_size: int,
use_thumbnail: bool,
interpolation: "F.InterpolationMode",
pad_during_tiling: bool,
) -> List["torch.Tensor"] :
image_size = get_image_size(image, channel_dim=ChannelDimension.FIRST)
orig_height, orig_width = image_size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, tile_size)
# calculate the target width and height
target_width = tile_size * target_aspect_ratio[0]
target_height = tile_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
if pad_during_tiling:
resized_image = self._resize_for_patching(
image, (target_height, target_width), interpolation=interpolation, input_data_format=ChannelDimension.FIRST
)
padded_image = self._pad_for_patching(resized_image, (target_height, target_width), input_data_format=ChannelDimension.FIRST)
image_used_to_split = padded_image
else:
image_used_to_split = F.resize(image, (target_height, target_width), interpolation=interpolation)
processed_tiles = []
for i in range(blocks):
box = (
(i % (target_width // tile_size)) * tile_size,
(i // (target_width // tile_size)) * tile_size,
((i % (target_width // tile_size)) + 1) * tile_size,
((i // (target_width // tile_size)) + 1) * tile_size
)
# split the image
split_img = crop(image_used_to_split, box[0], box[1], box[2], box[3])
processed_tiles.append(split_img)
assert len(processed_tiles) == blocks
if use_thumbnail and len(processed_tiles) != 1:
thumbnail_img = F.resize(image, (tile_size, tile_size), interpolation=interpolation)
processed_tiles.append(thumbnail_img)
return processed_tiles
def _pad_for_batching(
self,
pixel_values: List["torch.Tensor"],
) -> List["torch.Tensor"]:
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[torch.Tensor]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
Returns:
List[`torch.Tensor`]: The padded images.
"""
max_patch = max(len(x) for x in pixel_values)
pixel_values = [
torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]])
for image in pixel_values
]
return pixel_values
def _preprocess(
self,
images: List["torch.Tensor"],
do_resize: bool,
size: SizeDict,
max_dynamic_tiles: int,
min_dynamic_tiles: int,
use_thumbnail: bool,
pad_during_tiling: bool,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
do_pad: bool,
return_tensors: Optional[Union[str, TensorType]],
) -> BatchFeature:
processed_images = []
image_sizes = []
# Determine the size tuple
if size and size.height and size.width:
size_tuple = (size.height, size.width)
else:
size_tuple = (size.shortest_edge, size.shortest_edge)
# Determine the patch size
if crop_size and crop_size.height:
tile_size = crop_size.height
elif size and size.height:
tile_size = size.height
else:
tile_size = size.shortest_edge
for image in images:
image_patches = self._get_image_patches(
image,
min_num=min_dynamic_tiles,
max_num=max_dynamic_tiles,
size=size_tuple,
tile_size=tile_size,
use_thumbnail=use_thumbnail,
interpolation=interpolation,
pad_during_tiling=pad_during_tiling,
)
# Group images by size for batched processing
processed_image_patches_grouped = {}
grouped_image_patches, grouped_image_patches_index = group_images_by_shape(image_patches)
for shape, stacked_image_patches in grouped_image_patches.items():
if do_resize:
stacked_image_patches = self.resize(
image=stacked_image_patches,
size=size,
interpolation=interpolation,
)
if do_center_crop:
stacked_image_patches = self.center_crop(stacked_image_patches, crop_size)
# Fused rescale and normalize
stacked_image_patches = self.rescale_and_normalize(
stacked_image_patches, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_image_patches_grouped[shape] = stacked_image_patches
processed_image_patches = reorder_images(processed_image_patches_grouped, grouped_image_patches_index)
processed_image_patches = (
torch.stack(processed_image_patches, dim=0) if return_tensors else processed_image_patches
)
processed_images.append(processed_image_patches)
image_sizes.append(get_image_size(image, ChannelDimension.FIRST))
if do_pad:
processed_images = self._pad_for_batching(processed_images)
# processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
processed_images = torch.cat(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(
data={"pixel_values": processed_images, "image_sizes": image_sizes}, tensor_type=return_tensors
)
def preprocess(self, images: ImageInput, videos: VideoInput=None, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]) -> BatchFeature:
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self.valid_kwargs.__annotations__.keys())
# Set default kwargs from self. This ensures that if a kwarg is not provided
# by the user, it gets its default value from the instance, or is set to None.
for kwarg_name in self.valid_kwargs.__annotations__:
kwargs.setdefault(kwarg_name, getattr(self, kwarg_name, None))
# Extract parameters that are only used for preparing the input images
do_convert_rgb = kwargs.pop("do_convert_rgb")
input_data_format = kwargs.pop("input_data_format")
device = kwargs.pop("device")
# Prepare input images
if images is not None:
images = self._prepare_input_images(
images=images, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device
)
if videos is not None:
videos = self._prepare_input_images(
images=videos, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device
)
# Update kwargs that need further processing before being validated
kwargs = self._further_process_kwargs(**kwargs)
# Validate kwargs
self._validate_preprocess_kwargs(**kwargs)
# torch resize uses interpolation instead of resample
resample = kwargs.pop("resample")
kwargs["interpolation"] = (
pil_torch_interpolation_mapping[resample] if isinstance(resample, (PILImageResampling, int)) else resample
)
# Pop kwargs that are not needed in _preprocess
kwargs.pop("default_to_square")
kwargs.pop("data_format")
if images is not None:
return self._preprocess(images, **kwargs)
elif videos is not None:
return self._preprocess(videos, **kwargs)
__all__ = ["Eagle2_5_VLImageProcessorFast"]
|