j1j2j3_square_fnqs / vit_fnqs_model.py
rrende's picture
Upload model
6a12954 verified
from transformers import FlaxPreTrainedModel
import jax.numpy as jnp
from .transformer_fnqs import ViTFNQS
from .vit_fnqs_config import ViTFNQSConfig
class ViTFNQSModel(FlaxPreTrainedModel):
config_class = ViTFNQSConfig
def __init__(
self,
config: ViTFNQSConfig,
input_shape = (jnp.zeros((1, 100)), jnp.zeros((1, 1))),
seed: int = 0,
dtype: jnp.dtype = jnp.float64,
_do_init: bool = True,
**kwargs,
):
self.model = ViTFNQS(L_eff=config.L_eff,
num_layers=config.num_layers,
d_model=config.d_model,
heads=config.heads,
b=config.b,
complex=config.complex,
disorder=config.disorder,
transl_invariant=config.tras_inv,
two_dimensional=config.two_dim,
)
if not "return_z" in kwargs:
self.return_z = False
else:
self.return_z = kwargs["return_z"]
super().__init__(config, ViTFNQS, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def __call__(self, params, spins, coups):
return self.model.apply(params, spins, coups, return_z=self.return_z)
def init_weights(self, rng, input_shape):
return self.model.init(rng, *input_shape)