Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic

Model Overview

  • Model Architecture: Mistral3ForConditionalGeneration
    • Input: Text / Image
    • Output: Text
  • Model Optimizations:
    • Activation quantization: FP8
    • Weight quantization: FP8
  • Intended Use Cases: It is ideal for:
    • Fast-response conversational agents.
    • Low-latency function calling.
    • Subject matter experts via fine-tuning.
    • Local inference for hobbyists and organizations handling sensitive data.
    • Programming and math reasoning.
    • Long document understanding.
    • Visual understanding.
  • Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
  • Release Date: 04/15/2025
  • Version: 1.0
  • Model Developers: RedHat (Neural Magic)

Model Optimizations

This model was obtained by quantizing activations and weights of Mistral-Small-3.1-24B-Instruct-2503 to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. The llm-compressor library is used for quantization.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "Give me a short introduction to large language model."

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompt, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForImageTextToText, AutoProcessor

# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]

model = AutoModelForImageTextToText.from_pretrained(model_stub)

processor = AutoProcessor.from_pretrained(model_stub)

# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
    ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    targets="Linear",
    scheme="FP8_dynamic",
)

# Apply quantization
oneshot(
    model=model,
    recipe=recipe,
)

# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")

Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. Non-coding tasks were evaluated with lm-evaluation-harness, whereas coding tasks were evaluated with a fork of evalplus. vLLM is used as the engine in all cases.

Evaluation details

MMLU

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks mmlu \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

ARC Challenge

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks arc_challenge \
  --num_fewshot 25 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

GSM8k

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks gsm8k \
  --num_fewshot 8 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

Hellaswag

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

Winogrande

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks winogrande \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

TruthfulQA

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --apply_chat_template\
  --batch_size auto

MMLU-pro

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks mmlu_pro \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto

Coding

The commands below can be used for mbpp by simply replacing the dataset name.

Generation

python3 codegen/generate.py \
  --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval

Sanitization

python3 evalplus/sanitize.py \
  humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2

Evaluation

evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2-sanitized

Accuracy

Open LLM Leaderboard evaluation scores

Category Benchmark Mistral-Small-3.1-24B-Instruct-2503 Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
(this model)
Recovery
OpenLLM v1 MMLU (5-shot) 80.67 80.71 100.1%
ARC Challenge (25-shot) 72.78 72.87 100.1%
GSM-8K (5-shot, strict-match) 65.35 62.47 95.6%
Hellaswag (10-shot) 83.70 83.67 100.0%
Winogrande (5-shot) 83.74 82.56 98.6%
TruthfulQA (0-shot, mc2) 70.62 70.88 100.4%
Average 76.14 75.53 99.2%
MMLU-Pro (5-shot) 67.25 66.86 99.4%
GPQA CoT main (5-shot) 42.63 41.07 99.4%
GPQA CoT diamond (5-shot) 45.96 45.45 98.9%
Coding HumanEval pass@1 84.70 84.70 100.0%
HumanEval+ pass@1 79.50 79.30 99.8%
MBPP pass@1 71.10 70.00 98.5%
MBPP+ pass@1 60.60 59.50 98.2%
Downloads last month
2,650
Safetensors
Model size
24B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic