Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,74 +1,48 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
.
|
9 |
-
βββ data/ # Dataset storage
|
10 |
-
βββ models/ # Saved model files
|
11 |
-
βββ src/ # Source code
|
12 |
-
β βββ data_preparation.py
|
13 |
-
β βββ model.py
|
14 |
-
β βββ training.py
|
15 |
-
β βββ evaluation.py
|
16 |
-
β βββ deployment.py
|
17 |
-
βββ notebooks/ # Jupyter notebooks for exploration
|
18 |
-
βββ requirements.txt # Project dependencies
|
19 |
-
βββ README.md # Project documentation
|
20 |
-
```
|
21 |
-
|
22 |
-
## Setup Instructions
|
23 |
-
|
24 |
-
1. Create a virtual environment:
|
25 |
-
```bash
|
26 |
-
python -m venv venv
|
27 |
-
source venv/bin/activate # On Windows: venv\Scripts\activate
|
28 |
-
```
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
3. Run the training pipeline:
|
36 |
-
```bash
|
37 |
-
python src/training.py
|
38 |
-
```
|
39 |
|
40 |
-
##
|
41 |
|
42 |
-
|
43 |
-
- Data augmentation techniques
|
44 |
-
- Model evaluation and hyperparameter tuning
|
45 |
-
- Model deployment pipeline
|
46 |
-
- Performance monitoring
|
47 |
|
48 |
-
##
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
- Data augmentation
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
- Layer configuration
|
58 |
-
- Activation functions
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
5. Deployment
|
72 |
-
- Model saving
|
73 |
-
- Inference pipeline
|
74 |
-
- Performance monitoring
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- tensorflow
|
6 |
+
- image-classification
|
7 |
+
- mnist
|
8 |
+
- digits
|
9 |
+
datasets:
|
10 |
+
- mnist
|
11 |
+
metrics:
|
12 |
+
- accuracy
|
13 |
+
---
|
14 |
|
15 |
+
# Digit Recognition Model
|
16 |
|
17 |
+
This model is trained to recognize handwritten digits from the MNIST dataset.
|
18 |
|
19 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
- **Model Type:** CNN with Attention
|
22 |
+
- **Task:** Image Classification
|
23 |
+
- **Input:** 28x28 grayscale images
|
24 |
+
- **Output:** Digit classification (0-9)
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
## Training
|
27 |
|
28 |
+
The model was trained on the MNIST dataset using a CNN architecture with attention mechanisms.
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
## Usage
|
31 |
|
32 |
+
```python
|
33 |
+
import tensorflow as tf
|
34 |
+
import numpy as np
|
|
|
35 |
|
36 |
+
# Load the model
|
37 |
+
model = tf.saved_model.load("path_to_saved_model")
|
|
|
|
|
38 |
|
39 |
+
# Prepare input
|
40 |
+
image = tf.keras.preprocessing.image.load_img("digit.png", target_size=(28, 28))
|
41 |
+
image = tf.keras.preprocessing.image.img_to_array(image)
|
42 |
+
image = image.astype('float32') / 255.0
|
43 |
+
image = np.expand_dims(image, axis=0)
|
44 |
|
45 |
+
# Make prediction
|
46 |
+
predictions = model(image)
|
47 |
+
predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
|
48 |
+
```
|
|
|
|
|
|
|
|
|
|