nivashuggingface commited on
Commit
b59bde2
Β·
verified Β·
1 Parent(s): 7709a78

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +37 -63
README.md CHANGED
@@ -1,74 +1,48 @@
1
- # AI Model Training Project
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.
4
 
5
- ## Project Structure
6
 
7
- ```
8
- .
9
- β”œβ”€β”€ data/ # Dataset storage
10
- β”œβ”€β”€ models/ # Saved model files
11
- β”œβ”€β”€ src/ # Source code
12
- β”‚ β”œβ”€β”€ data_preparation.py
13
- β”‚ β”œβ”€β”€ model.py
14
- β”‚ β”œβ”€β”€ training.py
15
- β”‚ β”œβ”€β”€ evaluation.py
16
- β”‚ └── deployment.py
17
- β”œβ”€β”€ notebooks/ # Jupyter notebooks for exploration
18
- β”œβ”€β”€ requirements.txt # Project dependencies
19
- └── README.md # Project documentation
20
- ```
21
-
22
- ## Setup Instructions
23
-
24
- 1. Create a virtual environment:
25
- ```bash
26
- python -m venv venv
27
- source venv/bin/activate # On Windows: venv\Scripts\activate
28
- ```
29
 
30
- 2. Install dependencies:
31
- ```bash
32
- pip install -r requirements.txt
33
- ```
34
-
35
- 3. Run the training pipeline:
36
- ```bash
37
- python src/training.py
38
- ```
39
 
40
- ## Project Features
41
 
42
- - Custom CNN architecture for robust digit recognition
43
- - Data augmentation techniques
44
- - Model evaluation and hyperparameter tuning
45
- - Model deployment pipeline
46
- - Performance monitoring
47
 
48
- ## Learning Concepts Covered
49
 
50
- 1. Data Preprocessing
51
- - Data loading and cleaning
52
- - Feature engineering
53
- - Data augmentation
54
 
55
- 2. Model Architecture
56
- - Custom CNN design
57
- - Layer configuration
58
- - Activation functions
59
 
60
- 3. Training Process
61
- - Loss functions
62
- - Optimizers
63
- - Learning rate scheduling
64
- - Early stopping
65
 
66
- 4. Evaluation
67
- - Metrics calculation
68
- - Cross-validation
69
- - Model comparison
70
-
71
- 5. Deployment
72
- - Model saving
73
- - Inference pipeline
74
- - Performance monitoring
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - tensorflow
6
+ - image-classification
7
+ - mnist
8
+ - digits
9
+ datasets:
10
+ - mnist
11
+ metrics:
12
+ - accuracy
13
+ ---
14
 
15
+ # Digit Recognition Model
16
 
17
+ This model is trained to recognize handwritten digits from the MNIST dataset.
18
 
19
+ ## Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ - **Model Type:** CNN with Attention
22
+ - **Task:** Image Classification
23
+ - **Input:** 28x28 grayscale images
24
+ - **Output:** Digit classification (0-9)
 
 
 
 
 
25
 
26
+ ## Training
27
 
28
+ The model was trained on the MNIST dataset using a CNN architecture with attention mechanisms.
 
 
 
 
29
 
30
+ ## Usage
31
 
32
+ ```python
33
+ import tensorflow as tf
34
+ import numpy as np
 
35
 
36
+ # Load the model
37
+ model = tf.saved_model.load("path_to_saved_model")
 
 
38
 
39
+ # Prepare input
40
+ image = tf.keras.preprocessing.image.load_img("digit.png", target_size=(28, 28))
41
+ image = tf.keras.preprocessing.image.img_to_array(image)
42
+ image = image.astype('float32') / 255.0
43
+ image = np.expand_dims(image, axis=0)
44
 
45
+ # Make prediction
46
+ predictions = model(image)
47
+ predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
48
+ ```