|
import gradio as gr
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from PIL import Image
|
|
import io
|
|
|
|
|
|
model = tf.saved_model.load('https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model')
|
|
|
|
def preprocess_image(img):
|
|
"""Preprocess the drawn image for prediction"""
|
|
|
|
img = img.convert('L')
|
|
img = img.resize((28, 28))
|
|
|
|
img_array = np.array(img)
|
|
img_array = img_array.astype('float32') / 255.0
|
|
|
|
img_array = np.expand_dims(img_array, axis=0)
|
|
|
|
img_array = np.expand_dims(img_array, axis=-1)
|
|
return img_array
|
|
|
|
def predict_digit(img):
|
|
"""Predict digit from drawn image"""
|
|
|
|
processed_img = preprocess_image(img)
|
|
|
|
predictions = model(processed_img)
|
|
predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
|
|
|
|
confidence_scores = tf.nn.softmax(predictions[0]).numpy()
|
|
|
|
result = f"Predicted Digit: {predicted_digit}\n\nConfidence Scores:\n"
|
|
for i, score in enumerate(confidence_scores):
|
|
result += f"Digit {i}: {score:.2%}\n"
|
|
return result
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict_digit,
|
|
inputs=gr.Image(type="pil", label="Draw a digit (0-9)"),
|
|
outputs=gr.Textbox(label="Prediction Results"),
|
|
title="Digit Recognition with CNN",
|
|
description="Draw a digit (0-9) in the box below. The model will predict which digit you drew.",
|
|
examples=[
|
|
["examples/0.png"],
|
|
["examples/1.png"],
|
|
["examples/2.png"],
|
|
],
|
|
theme=gr.themes.Soft()
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |