StockZero-v2 / training-script-v2.py
nirajandhakal's picture
Create training-script-v2.py
450608e verified
raw
history blame contribute delete
14.7 kB
import chess
import chess.engine
import numpy as np
import tensorflow as tf
import time
import os
import datetime
import numpy as np
# --- 1. Neural Network (Policy and Value Network) ---
class PolicyValueNetwork(tf.keras.Model):
def __init__(self, num_moves):
super(PolicyValueNetwork, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same') # Removed input_shape
self.flatten = tf.keras.layers.Flatten()
self.dense_policy = tf.keras.layers.Dense(num_moves, activation='softmax', name='policy_head')
self.dense_value = tf.keras.layers.Dense(1, activation='tanh', name='value_head')
def call(self, inputs):
x = self.conv1(inputs)
x = self.flatten(x)
policy = self.dense_policy(x)
value = self.dense_value(x)
return policy, value
# --- 2. Board Representation and Preprocessing ---
def board_to_input(board):
piece_types = [chess.PAWN, chess.KNIGHT, chess.BISHOP, chess.ROOK, chess.QUEEN, chess.KING]
input_planes = np.zeros((8, 8, 12), dtype=np.float32)
for piece_type_index, piece_type in enumerate(piece_types):
for square in chess.SQUARES:
piece = board.piece_at(square)
if piece is not None:
if piece.piece_type == piece_type:
plane_index = piece_type_index if piece.color == chess.WHITE else piece_type_index + 6
row, col = chess.square_rank(square), chess.square_file(square)
input_planes[row, col, plane_index] = 1.0
return input_planes
def get_legal_moves_mask(board):
legal_moves = list(board.legal_moves)
move_indices = [move_to_index(move) for move in legal_moves]
# --- Defensive Check: Filter out-of-bounds indices ---
valid_move_indices = []
out_of_bounds_indices = []
for index in move_indices:
if 0 <= index < NUM_POSSIBLE_MOVES:
valid_move_indices.append(index)
else:
out_of_bounds_indices.append(index)
mask = np.zeros(NUM_POSSIBLE_MOVES, dtype=np.float32)
mask[valid_move_indices] = 1.0
return mask
# --- 3. Move Encoding/Decoding (Correct and Deterministic Implementation) ---
NUM_POSSIBLE_MOVES = 4672 # Correct value based on deterministic encoding
def move_to_index(move):
"""Standard, deterministic move to index conversion (UCI-like encoding)."""
index = 0
# Non-promotion moves (most common)
if move.promotion is None:
index = move.from_square * 64 + move.to_square # Source and target squares
# Promotion moves - use offsets to separate them from non-promotion indices
elif move.promotion == chess.KNIGHT:
index = 4096 + move.to_square # Knight promotions start after non-promotion moves
elif move.promotion == chess.BISHOP:
index = 4096 + 64 + move.to_square # Bishop promotions after Knights
elif move.promotion == chess.ROOK:
index = 4096 + 64*2 + move.to_square # Rook promotions after Bishops
elif move.promotion == chess.QUEEN:
index = 4096 + 64*3 + move.to_square # Queen promotions after Rooks
else:
raise ValueError(f"Unknown promotion piece type: {move.promotion}")
return index
def index_to_move(index, board):
"""Standard, deterministic index to move conversion (index to chess.Move)."""
if 0 <= index < 4096: # Non-promotion moves
from_square = index // 64
to_square = index % 64
promotion = None
elif 4096 <= index < 4096 + 64: # Knight promotions
from_square_rank = chess.square_rank(chess.A8) - 1 # Rank 8 for White Pawns, Rank 1 for Black Pawns, -1 for index conversion
from_square = chess.square(chess.square_file(chess.A1), from_square_rank) # Assume promotion from any file on promotion rank. Refine as needed.
to_square = index - 4096
promotion = chess.KNIGHT
elif 4096 + 64 <= index < 4096 + 64*2: # Bishop promotions
from_square_rank = chess.square_rank(chess.A8) - 1
from_square = chess.square(chess.square_file(chess.A1), from_square_rank)
to_square = index - (4096 + 64)
promotion = chess.BISHOP
elif 4096 + 64*2 <= index < 4096 + 64*3: # Rook promotions
from_square_rank = chess.square_rank(chess.A8) - 1
from_square = chess.square(chess.square_file(chess.A1), from_square_rank)
to_square = index - (4096 + 64*2)
promotion = chess.ROOK
elif 4096 + 64*3 <= index < NUM_POSSIBLE_MOVES: # Queen promotions
from_square_rank = chess.square_rank(chess.A8) - 1
from_square = chess.square(chess.square_file(chess.A1), from_square_rank)
to_square = index - (4096 + 64*3)
promotion = chess.QUEEN
else: # Invalid index
return None
move = chess.Move(from_square, to_square, promotion=promotion)
if move in board.legal_moves:
return move
return None # Move is not legal
def get_game_result_value(board):
if board.is_checkmate():
return 1 if board.turn == chess.BLACK else -1
elif board.is_stalemate() or board.is_insufficient_material() or board.is_seventyfive_moves() or board.is_fivefold_repetition() or board.is_variant_draw():
return 0
else:
return 0
# --- 4. Monte Carlo Tree Search (MCTS) ---
class MCTSNode:
def __init__(self, board, parent=None, prior_prob=0):
self.board = board.copy()
self.parent = parent
self.children = {}
self.visits = 0
self.value_sum = 0
self.prior_prob = prior_prob
self.policy_prob = 0
self.value = 0
def select_child(self, exploration_constant=1.4):
best_child = None
best_ucb = -float('inf')
for move, child in self.children.items():
ucb = child.value + exploration_constant * child.prior_prob * np.sqrt(self.visits) / (1 + child.visits)
if ucb > best_ucb:
best_ucb = ucb
best_child = child
return best_child
def expand(self, policy_probs):
legal_moves = list(self.board.legal_moves)
for move in legal_moves:
move_index = move_to_index(move)
prior_prob = policy_probs[move_index]
self.children[move] = MCTSNode(chess.Board(fen=self.board.fen()), parent=self, prior_prob=prior_prob)
def evaluate(self, policy_value_net):
input_board = board_to_input(self.board)
policy_output, value_output = policy_value_net(np.expand_dims(input_board, axis=0))
policy_probs = policy_output.numpy()[0]
value = value_output.numpy()[0][0]
legal_moves_mask = get_legal_moves_mask(self.board)
masked_policy_probs = policy_probs * legal_moves_mask
if np.sum(masked_policy_probs) > 0:
masked_policy_probs /= np.sum(masked_policy_probs)
else:
masked_policy_probs = legal_moves_mask / np.sum(legal_moves_mask)
self.policy_prob = masked_policy_probs
self.value = value
return value, masked_policy_probs
def backup(self, value):
self.visits += 1
self.value_sum += value
self.value = self.value_sum / self.visits
if self.parent:
self.parent.backup(-value)
def run_mcts(root_node, policy_value_net, num_simulations):
for _ in range(num_simulations):
node = root_node
search_path = [node]
while node.children and not node.board.is_game_over():
node = node.select_child()
search_path.append(node)
leaf_node = search_path[-1]
if not leaf_node.board.is_game_over():
value, policy_probs = leaf_node.evaluate(policy_value_net)
leaf_node.expand(policy_probs)
else:
value = get_game_result_value(leaf_node.board)
leaf_node.backup(value)
return choose_best_move_from_mcts(root_node)
def choose_best_move_from_mcts(root_node, temperature=0.0):
if temperature == 0:
best_move = max(root_node.children, key=lambda move: root_node.children[move].visits)
else:
visits = [root_node.children[move].visits for move in root_node.children]
move_probs = np.array(visits) ** (1/temperature)
move_probs = move_probs / np.sum(move_probs)
moves = list(root_node.children.keys())
best_move = np.random.choice(moves, p=move_probs)
return best_move
# --- 5. RL Engine Class ---
class RLEngine:
def __init__(self, policy_value_net, num_simulations_per_move=100):
self.policy_value_net = policy_value_net
self.num_simulations_per_move = num_simulations_per_move
def choose_move(self, board):
root_node = MCTSNode(board)
best_move = run_mcts(root_node, self.policy_value_net, self.num_simulations_per_move)
return best_move
# --- 6. Training Functions ---
def self_play_game(engine, model, num_simulations):
game_history = []
board = chess.Board()
while not board.is_game_over():
root_node = MCTSNode(board)
run_mcts(root_node, model, num_simulations)
policy_targets = create_policy_targets_from_mcts_visits(root_node)
game_history.append((board.fen(), policy_targets))
best_move = choose_best_move_from_mcts(root_node, temperature=0.8) # Exploration temperature
board.push(best_move)
game_result = get_game_result_value(board)
for i in range(len(game_history)):
fen, policy_target = game_history[i]
game_history[i] = (fen, policy_target, game_result if board.turn == chess.WHITE else -game_result)
return game_history
def create_policy_targets_from_mcts_visits(root_node):
policy_targets = np.zeros(NUM_POSSIBLE_MOVES, dtype=np.float32)
for move, child_node in root_node.children.items():
move_index = move_to_index(move)
policy_targets[move_index] = child_node.visits
policy_targets /= np.sum(policy_targets)
return policy_targets
def train_step(model, board_inputs, policy_targets, value_targets, optimizer):
with tf.GradientTape() as tape:
policy_outputs, value_outputs = model(board_inputs)
policy_loss = tf.keras.losses.CategoricalCrossentropy()(policy_targets, policy_outputs)
value_loss = tf.keras.losses.MeanSquaredError()(value_targets, value_outputs)
total_loss = policy_loss + value_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return total_loss, policy_loss, value_loss
def train_network(model, game_histories, optimizer, epochs=10, batch_size=32):
all_board_inputs = []
all_policy_targets = []
all_value_targets = []
for game_history in game_histories:
for fen, policy_target, game_result in game_history:
board = chess.Board(fen)
all_board_inputs.append(board_to_input(board))
all_policy_targets.append(policy_target)
all_value_targets.append(np.array([game_result]))
all_board_inputs = np.array(all_board_inputs)
all_policy_targets = np.array(all_policy_targets)
all_value_targets = np.array(all_value_targets)
dataset = tf.data.Dataset.from_tensor_slices((all_board_inputs, all_policy_targets, all_value_targets))
dataset = dataset.shuffle(buffer_size=len(all_board_inputs)).batch(batch_size).prefetch(tf.data.AUTOTUNE)
for epoch in range(epochs):
print(f"Epoch {epoch+1}/{epochs}")
for batch_inputs, batch_policy_targets, batch_value_targets in dataset:
loss, p_loss, v_loss = train_step(model, batch_inputs, batch_policy_targets, batch_value_targets, optimizer)
print(f"  Loss: {loss:.4f}, Policy Loss: {p_loss:.4f}, Value Loss: {v_loss:.4f}")
# --- 7. Main Training Execution in Colab ---
if __name__ == "__main__":
# --- Check GPU Availability in Colab ---
if tf.config.list_physical_devices('GPU'):
print("\n\nGPU is available and will be used for training.\n\n")
gpu_device = '/GPU:0' # Use GPU 0 if available
else:
print("\n\nGPU is not available. Training will use CPU (may be slow).\n\n")
gpu_device = '/CPU:0'
with tf.device(gpu_device): # Explicitly place operations on GPU (if available)
# Initialize Neural Network, Engine, and Optimizer
policy_value_net = PolicyValueNetwork(NUM_POSSIBLE_MOVES)
engine = RLEngine(policy_value_net, num_simulations_per_move=100)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
# --- Training Parameters ---
num_self_play_games = 50 # Adjust for longer training
epochs = 5 # Adjust for longer training
# --- Run Self-Play and Training ---
game_histories = []
start_time = time.time()
# --- Model Save Directory in Colab ---
MODEL_SAVE_DIR = "models_colab" # Directory to save model in Colab
os.makedirs(MODEL_SAVE_DIR, exist_ok=True) # Create directory if it doesn't exist
for i in range(num_self_play_games):
print(f"Self-play game {i+1}/{num_self_play_games} \n")
game_history = self_play_game(engine, policy_value_net, num_simulations=50) # Reduced sims for faster games
game_histories.append(game_history)
train_network(policy_value_net, game_histories, optimizer, epochs=epochs)
end_time = time.time()
training_time = end_time - start_time
print(f"\n\n ---- Training completed in {training_time:.2f} seconds. ---- \n")
# --- Save the trained model (architecture + weights) in SavedModel format ---
current_datetime = datetime.datetime.now()
model_version_str = current_datetime.strftime("%Y-%m-%d-%H%M") # Added hour and minute for uniqueness
model_save_path = os.path.join(MODEL_SAVE_DIR, f"StockZero-{model_version_str}.weights.h5") # Versioned filename
policy_value_net.save_weights(model_save_path) # Saves model weights
print(f"Trained model weights saved to '{model_save_path}' in '{MODEL_SAVE_DIR}' directory in Colab.")
# --- Download the saved model (for use outside Colab) ---
# --- (Optional: Uncomment to download the saved model as a zip file) ---
import shutil
zip_file_path = f"StockZero-{model_version_str}"
shutil.make_archive(zip_file_path, 'zip', MODEL_SAVE_DIR) # Create zip archive
print(f"Model directory zipped to '{zip_file_path}'. Download this file.")
from google.colab import files
files.download(f"{zip_file_path}.zip") # Trigger download in Colab
print("\n\n ----- Training finished. ------- \n\n")