MiniMonkey / internvl_chat.py
mx262's picture
Update internvl_chat.py
e06a7fa verified
raw
history blame contribute delete
24.6 kB
import torch
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor
import warnings
from PIL import Image
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE
import pandas as pd
import string
import torch.distributed as dist
import torchvision.transforms as T
import transformers
from torchvision.transforms.functional import InterpolationMode
import re
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=5, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
if prior_aspect_ratio is not None:
for i in target_ratios:
if i[0]==1 and prior_aspect_ratio[1]%i[1] !=0:
new_target_ratios.append(i)
elif i[1]==1 and prior_aspect_ratio[0]%i[0] !=0:
new_target_ratios.append(i)
elif prior_aspect_ratio[0]%i[0] !=0 or prior_aspect_ratio[1]%i[1] !=0:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, min_num=1, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio
def load_image2(image_file, input_size=448, target_aspect_ratio=(1,1), min_num=1, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, prior_aspect_ratio=target_aspect_ratio, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# This function is used to split InternVL2-Llama3-76B
def split_model(model_name):
import math
device_map = {}
num_gpus = torch.cuda.device_count()
rank, world_size = get_rank_and_world_size()
num_gpus = num_gpus // world_size
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
# Since the first GPU will be used for ViT, treat it as 0.8 GPU.
num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.2))
num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.8)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
layer_cnt += 1
device_map['vision_model'] = rank
device_map['mlp1'] = rank
device_map['language_model.model.tok_embeddings'] = rank
device_map['language_model.model.embed_tokens'] = rank
device_map['language_model.output'] = rank
device_map['language_model.model.norm'] = rank
device_map['language_model.lm_head'] = rank
device_map[f'language_model.model.layers.{num_layers - 1}'] = rank
return device_map
class InternVLChat(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='OpenGVLab/InternVL-Chat-V1-5', load_in_8bit=False, version='V1.0', **kwargs):
assert model_path is not None
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
# Regular expression to match the pattern 'Image' followed by a number, e.g. Image1
self.pattern = r'Image(\d+)'
# Replacement pattern to insert a hyphen between 'Image' and the number, e.g. Image-1
self.replacement = r'Image-\1'
# Convert InternVL2 response to dataset format
# e.g. Image1 -> Image-1
# Regular expression to match the pattern 'Image-' followed by a number
self.reverse_pattern = r'Image-(\d+)'
# Replacement pattern to remove the hyphen (Image-1 -> Image1)
self.reverse_replacement = r'Image\1'
if listinstr(['InternVL2-Llama3-76B'], model_path):
device_map = split_model(model_path.split('/')[-1])
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
load_in_8bit=load_in_8bit,
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device_map).eval()
else:
device = torch.cuda.current_device()
self.device = device
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=load_in_8bit).eval()
if not load_in_8bit:
self.model = self.model.to(device)
self.image_size = self.model.config.vision_config.image_size
self.version = version
self.kwargs = kwargs
warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
def use_custom_prompt(self, dataset):
if dataset is not None and listinstr(['MMDU'], dataset):
# For Multi-Turn we don't have custom prompt
return False
else:
return True
def build_multi_choice_prompt(self, line, dataset=None):
question = line['question']
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
question = hint + '\n' + question
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
for key, item in options.items():
question += f'\n{key}. {item}'
prompt = question
if len(options):
prompt += '\n请直接回答选项字母。' if cn_string(
prompt) else "\nAnswer with the option's letter from the given choices directly."
else:
prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.'
return prompt
def build_video_prompt(self, prompt, dataset=None, max_nframe=64):
for start in range(0, max_nframe, 8):
images_to_remove = ''.join([f'<image-{i}>' for i in range(start + 1, start + 9)])
prompt = prompt.replace(images_to_remove, '')
for i in range(max_nframe):
prompt = prompt.replace(f'<image-{i + 1}>', f'Frame{i + 1}')
if listinstr(['MMBench-Video'], dataset):
prompt = prompt.replace('\nAnswer:', '')
prompt += '\nAnswer the question using a single word or phrase.'
elif listinstr(['Video-MME'], dataset):
prompt = prompt.replace('\nAnswer:', '')
prompt += "\nAnswer with the option's letter from the given choices directly."
return prompt
def build_prompt(self, line, dataset=None):
assert self.use_custom_prompt(dataset)
assert dataset is None or isinstance(dataset, str)
tgt_path = self.dump_image(line, dataset)
if self.version == 'V1.1':
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=5)
else:
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1)
self.kwargs = kwargs_default
if dataset is not None and listinstr(['MME'], dataset):
question = line['question']
prompt = question + ' Answer the question using a single word or phrase.'
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question = line['question']
prompt = question + ' Please answer yes or no. Answer the question using a single word or phrase.'
elif dataset is not None and DATASET_TYPE(dataset) == 'MCQ':
prompt = self.build_multi_choice_prompt(line, dataset)
elif dataset is not None and DATASET_TYPE(dataset) == 'VQA':
if listinstr(['MathVista', 'MathVision'], dataset):
prompt = line['question']
elif listinstr(['LLaVABench'], dataset):
question = line['question']
prompt = question + '\nAnswer this question in detail.'
elif listinstr(['MMVet'], dataset):
prompt = line['question']
else:
question = line['question']
prompt = question + '\nAnswer the question using a single word or phrase.'
else:
prompt = line['question']
message = [dict(type='text', value=prompt)]
message.extend([dict(type='image', value=s) for s in tgt_path])
return message
def set_max_num(self, dataset):
if dataset is not None and listinstr(['ChartQA_TEST'], dataset):
self.max_num = 12
self.max_num2 = 3
elif dataset is not None and listinstr(['DocVQA_VAL', 'DocVQA_TEST', 'TextVQA_VAL'], dataset):
self.max_num = 23
self.max_num2 = 15
self.min_num = 14
self.min_num2 = 5
elif dataset is not None and listinstr(['InfoVQA_VAL', 'InfoVQA_TEST', 'SEEDBench_IMG'], dataset):
self.max_num = 23
self.max_num2 = 5
self.min_num = 15
self.min_num2 = 3
elif dataset is not None and listinstr(['OCRBench', 'POPE'], dataset):
self.max_num = 24
self.max_num2 = 8
self.min_num = 9
self.min_num2 = 5
elif dataset is not None and listinstr(['MME', 'HallusionBench'], dataset):
self.max_num = 11
self.max_num2 = 6
self.min_num = 4
self.min_num2 = 2
elif dataset is not None and listinstr(['AI2D_TEST'], dataset):
self.max_num = 12
self.max_num2 = 6
self.min_num = 5
self.min_num2 = 2
elif dataset is not None and listinstr(['CCBench'], dataset):
self.max_num = 24
self.max_num2 = 8
self.min_num = 9
self.min_num2 = 4
else:
self.max_num = 8
self.max_num2 = 4
self.min_num = 3
self.min_num2 = 1
def generate_v1_2(self, message, dataset=None):
self.INTERLEAVE = False
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path).convert('RGB')
image = image.resize((self.image_size, self.image_size))
image_processor = CLIPImageProcessor.from_pretrained(self.model_path)
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).to(self.device)
with torch.no_grad():
response = self.model.chat(self.tokenizer, pixel_values=pixel_values,
question=prompt, generation_config=self.kwargs)
return response
def generate_v1_5(self, message, dataset=None):
image_num = len([x for x in message if x['type'] == 'image'])
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
if listinstr(['Video'], dataset):
prompt = self.build_video_prompt(prompt, dataset)
if image_num > 1:
image_path = [x['value'] for x in message if x['type'] == 'image']
pixel_values_list = []
for file_name in image_path:
pixel_values_list.append(load_image(file_name, max_num=self.max_num).cuda().to(torch.bfloat16))
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_num == 1:
image_path = [x['value'] for x in message if x['type'] == 'image'][0]
pixel_values = load_image(image_path, max_num=self.max_num).cuda().to(torch.bfloat16)
else:
pixel_values = None
with torch.no_grad():
response = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
question=prompt,
generation_config=self.kwargs,
verbose=False)
return response
def generate_v2(self, message, dataset=None):
image_num = len([x for x in message if x['type'] == 'image'])
if image_num == 1:
prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text'])
else:
prompt, image_idx = '', 1
for x in message:
if x['type'] == 'text':
prompt += x['value']
elif x['type'] == 'image':
prompt += f'<image-{image_idx}>'
image_idx += 1
prompt = ' '.join([f'<image-{i + 1}>: <image>' for i in range(image_num)]) + '\n' + prompt
if listinstr(['Video'], dataset):
prompt = self.build_video_prompt(prompt, dataset)
if image_num > 1:
image_path = [x['value'] for x in message if x['type'] == 'image']
num_patches_list = []
pixel_values_list = []
for image_idx, file_name in enumerate(image_path):
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
curr_pixel_values = load_image(
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
curr_pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num)
curr_pixel_values = curr_pixel_values.cuda().to(torch.bfloat16)
curr_pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2)
curr_pixel_values2 = curr_pixel_values2.cuda().to(torch.bfloat16)
curr_pixel_values = torch.cat((curr_pixel_values[:-1], curr_pixel_values2[:-1], curr_pixel_values[-1:]), 0)
num_patches_list.append(curr_pixel_values.size(0))
pixel_values_list.append(curr_pixel_values)
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_num == 1:
image_path = [x['value'] for x in message if x['type'] == 'image'][0]
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset)
pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num)
pixel_values = pixel_values.cuda().to(torch.bfloat16)
pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2)
pixel_values2 = pixel_values2.cuda().to(torch.bfloat16)
pixel_values = torch.cat((pixel_values[:-1], pixel_values2[:-1], pixel_values[-1:]), 0)
num_patches_list = [pixel_values.size(0)]
else:
pixel_values = None
num_patches_list = []
with torch.no_grad():
response = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
target_aspect_ratio=(1,1),
num_patches_list=num_patches_list,
question=prompt,
generation_config=self.kwargs,
verbose=False
)
return response
def generate_inner(self, message, dataset=None):
self.set_max_num(dataset)
print(f'InternVL model version: {self.version}')
if self.version in ['V1.1', 'V1.2']:
return self.generate_v1_2(message, dataset)
elif self.version == 'V1.5':
return self.generate_v1_5(message, dataset)
elif self.version == 'V2.0':
return self.generate_v2(message, dataset)
else:
raise ValueError(f'Unsupported version: {self.version}')
def build_history(self, message):
# Global Variables
image_path = []
image_cnt = 0
def concat_tilist(tilist):
nonlocal image_cnt # Declare image_cnt as nonlocal to modify it
prompt = ''
for item in tilist:
# Substitute the pattern in the text
if item['type'] == 'text':
prompt += re.sub(self.pattern, self.replacement, item['value'])
elif item['type'] == 'image':
image_cnt += 1
prompt += '<image>\n'
image_path.append(item['value'])
return prompt
# Only previous messages
assert len(message) % 2 == 0
history = []
for i in range(len(message) // 2):
m1, m2 = message[2 * i], message[2 * i + 1]
assert m1['role'] == 'user' and m2['role'] == 'assistant'
history.append((concat_tilist(m1['content']), concat_tilist(m2['content'])))
return history, image_path, image_cnt
def chat_inner_v2(self, message, dataset=None):
image_cnt = 0
if len(message) > 1:
history, image_path, image_cnt = self.build_history(message[:-1])
else:
history, image_path, image_cnt = None, [], 1
current_msg = message[-1]
question = ''
# If message is just text in the conversation
if len(current_msg['content']) == 1 and current_msg['content'][0]['type'] == 'text':
question = current_msg['content'][0]['value']
question = re.sub(self.pattern, self.replacement, question) # Fix pattern as per InternVL
else:
for msg in current_msg['content']:
if msg['type'] == 'text':
question += re.sub(self.pattern, self.replacement, msg['value'])
elif msg['type'] == 'image':
image_cnt += 1
question += '<image>\n'
image_path.append(msg['value'])
if image_cnt > 1:
num_patches_list = []
pixel_values_list = []
for image_idx, file_name in enumerate(image_path):
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
curr_pixel_values = load_image(
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
num_patches_list.append(curr_pixel_values.size(0))
pixel_values_list.append(curr_pixel_values)
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_cnt == 1:
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset)
pixel_values = load_image(
image_path, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
num_patches_list = [pixel_values.size(0)]
else:
pixel_values = None
num_patches_list = []
response, history = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
target_aspect_ratio=target_aspect_ratio,
num_patches_list=num_patches_list,
question=question,
generation_config=self.kwargs,
history=history,
return_history=True
)
response = re.sub(self.reverse_pattern, self.reverse_replacement, response)
return response
def chat_inner(self, message, dataset=None):
self.set_max_num(dataset)
if self.version in ['V1.1', 'V1.2']:
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')
elif self.version == 'V1.5':
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')
elif self.version == 'V2.0':
kwargs_default = dict(do_sample=False, max_new_tokens=512, top_p=None, num_beams=1)
self.kwargs = kwargs_default
return self.chat_inner_v2(message, dataset)
else:
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')