mtyrrell commited on
Commit
f68e437
·
1 Parent(s): 611a6db

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -21
README.md CHANGED
@@ -8,14 +8,6 @@ metrics:
8
  model-index:
9
  - name: IKT_classifier_conditional_best
10
  results: []
11
-
12
- widget:
13
- - text: "Brick Kilns. Enforcement and Improved technology use. Residential and Commercial. Enhanced use of energy- efficient appliances in household and commercial buildings. F-Gases. Implement Montreal Protocol targets. Industry. Achieve 10% Energy efficiency in the Industry sub-sector through measures according to the Energy Efficiency and Conservation Master Plan (EECMP). Agriculture. Implementation of 5925 Nos. solar irrigation pumps (generating 176.38MW) for agriculture. Brick Kilns. 14% emission reduction through Banning Fixed Chimney kiln (FCK), encourage advanced technology and non-fired brick use. Residential and Commercial."
14
- example_title: UNCONDITIONAL
15
- - text: "Achieve 20% Energy efficiency in the Industry sub-sector through measures according to the Energy Efficiency and Conservation Master Plan (EECMP). Promote green Industry. Promote carbon financing. Agriculture. Enhanced use of solar energy in Agriculture. Agriculture. Implementation of 4102 Nos. solar irrigation pumps (generating 164 MW) for agriculture. Brick Kilns. Enforcement and Improved technology use. Brick Kilns. 47% emission reduction through Banning Fixed Chimney kiln (FCK), encourage advanced technology and non-fired brick use. Residential and Commercial."
16
- example_title: CONDITIONAL
17
- - text: "The GHG emission reductions from Cairo metro network includes the rehabilitation of existing lines 1, 2, and 3. • The development of Alexandria Metro (Abu Qir – Alexandria railway line) and rehabilitation of the Raml tram line."
18
- example_title: CONDITIONAL
19
  ---
20
 
21
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -23,15 +15,15 @@ should probably proofread and complete it, then remove this comment. -->
23
 
24
  # IKT_classifier_conditional_best
25
 
26
- This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [GIZ/policy_qa_v0_1](https://huggingface.co/datasets/GIZ/policy_qa_v0_1) dataset.
27
  It achieves the following results on the evaluation set:
28
- - Loss: 0.9766
29
- - Precision Macro: 0.8010
30
- - Precision Weighted: 0.8078
31
- - Recall Macro: 0.7928
32
- - Recall Weighted: 0.8093
33
- - F1-score: 0.7963
34
- - Accuracy: 0.8093
35
 
36
  ## Model description
37
 
@@ -63,11 +55,11 @@ The following hyperparameters were used during training:
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
66
- | 0.6562 | 1.0 | 696 | 0.5617 | 0.7283 | 0.7423 | 0.7283 | 0.7423 | 0.7283 | 0.7423 |
67
- | 0.6091 | 2.0 | 1392 | 0.6492 | 0.7345 | 0.7443 | 0.7251 | 0.7474 | 0.7287 | 0.7474 |
68
- | 0.3892 | 3.0 | 2088 | 0.7730 | 0.7848 | 0.7872 | 0.7612 | 0.7887 | 0.7687 | 0.7887 |
69
- | 0.2509 | 4.0 | 2784 | 0.9735 | 0.7778 | 0.7937 | 0.7858 | 0.7887 | 0.7807 | 0.7887 |
70
- | 0.1648 | 5.0 | 3480 | 0.9766 | 0.8010 | 0.8078 | 0.7928 | 0.8093 | 0.7963 | 0.8093 |
71
 
72
 
73
  ### Framework versions
 
8
  model-index:
9
  - name: IKT_classifier_conditional_best
10
  results: []
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  # IKT_classifier_conditional_best
17
 
18
+ This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.5371
21
+ - Precision Macro: 0.8714
22
+ - Precision Weighted: 0.8713
23
+ - Recall Macro: 0.8711
24
+ - Recall Weighted: 0.8712
25
+ - F1-score: 0.8712
26
+ - Accuracy: 0.8712
27
 
28
  ## Model description
29
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
58
+ | 0.6658 | 1.0 | 698 | 0.7196 | 0.7391 | 0.7381 | 0.7102 | 0.7124 | 0.7028 | 0.7124 |
59
+ | 0.6301 | 2.0 | 1396 | 0.4965 | 0.8073 | 0.8075 | 0.8071 | 0.8069 | 0.8069 | 0.8069 |
60
+ | 0.5252 | 3.0 | 2094 | 0.5307 | 0.8300 | 0.8297 | 0.8279 | 0.8283 | 0.8279 | 0.8283 |
61
+ | 0.3513 | 4.0 | 2792 | 0.5261 | 0.8626 | 0.8627 | 0.8626 | 0.8627 | 0.8626 | 0.8627 |
62
+ | 0.2979 | 5.0 | 3490 | 0.5371 | 0.8714 | 0.8713 | 0.8711 | 0.8712 | 0.8712 | 0.8712 |
63
 
64
 
65
  ### Framework versions