File size: 1,898 Bytes
bf80e4b daa2552 bf80e4b 0abaea9 bf80e4b daa2552 bf80e4b 0abaea9 bf80e4b 0abaea9 bf80e4b 0abaea9 bf80e4b daa2552 bf80e4b daa2552 bf80e4b daa2552 bf80e4b daa2552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-ja-en
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: ruby-rails-fine-tuned-ja-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ruby-rails-fine-tuned-ja-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en).
It achieves the following results on the evaluation set:
- Loss: 1.6714
- Bleu: 0.3300
- Chrf: 64.8493
## Model description
Fine-tuned for Japanese to English translation of the Ruby and Rails documentation.
## Intended uses & limitations
The training dataset (see below) is still very small, so only minor improvements are expected.
## Training and evaluation data
Trained on a custom dataset specifically based on Ruby and Ruby on Rails documentation: https://huggingface.co/datasets/morinoko-inari/ruby-rails-ja-en
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 23 | 1.7593 | 0.3283 | 64.8523 |
| No log | 2.0 | 46 | 1.6915 | 0.3260 | 64.6705 |
| No log | 3.0 | 69 | 1.6714 | 0.3300 | 64.8493 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0
- Datasets 3.5.0
- Tokenizers 0.21.1
|