File size: 1,458 Bytes
01925af f4b18fe 01925af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
- mlx
license: llama2
library_name: mlx
base_model: codellama/CodeLlama-7b-Instruct-hf
---
# mlx-community/CodeLlama-7b-Instruct-hf-4bit-mlx-2
As opposed to [mlx-community/CodeLlama-7b-Instruct-hf-4bit-MLX](https://huggingface.co/mlx-community/CodeLlama-7b-Instruct-hf-4bit-MLX), this
one is converted from the base model using a newer MLX-LM version which uses newer and improved quantization and generates model
in a more standard format. For context see [Issue#130](https://github.com/ml-explore/mlx-lm/issues/130) and [PR#114](https://github.com/ml-explore/mlx-lm/pull/114)
of the [MLX-LM](https://github.com/ml-explore/mlx-lm) repo.
This model [mlx-community/CodeLlama-7b-Instruct-hf-4bit-mlx-2](https://huggingface.co/mlx-community/CodeLlama-7b-Instruct-hf-4bit-mlx-2) was
converted to MLX format from [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
using mlx-lm version **0.23.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/CodeLlama-7b-Instruct-hf-4bit-mlx-2")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|