tmills commited on
Commit
ad6fe15
·
verified ·
1 Parent(s): ac4b483

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</a1>": 28898,
3
+ "</a2>": 28900,
4
+ "</e>": 28896,
5
+ "<a1>": 28897,
6
+ "<a2>": 28899,
7
+ "<cr>": 28901,
8
+ "<e>": 28895,
9
+ "<neg>": 28902
10
+ }
config.json ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CnlpModelForClassification"
4
+ ],
5
+ "character_level": false,
6
+ "cnlpt_version": "0.7.0",
7
+ "encoder_config": {
8
+ "_name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
9
+ "add_cross_attention": false,
10
+ "architectures": [
11
+ "BertForMaskedLM"
12
+ ],
13
+ "attention_probs_dropout_prob": 0.1,
14
+ "bad_words_ids": null,
15
+ "begin_suppress_tokens": null,
16
+ "bos_token_id": null,
17
+ "chunk_size_feed_forward": 0,
18
+ "classifier_dropout": null,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": null,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "gelu",
31
+ "hidden_dropout_prob": 0.1,
32
+ "hidden_size": 768,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 3072,
39
+ "is_decoder": false,
40
+ "is_encoder_decoder": false,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1
44
+ },
45
+ "layer_norm_eps": 1e-12,
46
+ "length_penalty": 1.0,
47
+ "max_length": 20,
48
+ "max_position_embeddings": 512,
49
+ "min_length": 0,
50
+ "model_type": "bert",
51
+ "no_repeat_ngram_size": 0,
52
+ "num_attention_heads": 12,
53
+ "num_beam_groups": 1,
54
+ "num_beams": 1,
55
+ "num_hidden_layers": 12,
56
+ "num_return_sequences": 1,
57
+ "output_attentions": false,
58
+ "output_hidden_states": false,
59
+ "output_scores": false,
60
+ "pad_token_id": 0,
61
+ "position_embedding_type": "absolute",
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "pruned_heads": {},
65
+ "remove_invalid_values": false,
66
+ "repetition_penalty": 1.0,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "sep_token_id": null,
70
+ "suppress_tokens": null,
71
+ "task_specific_params": null,
72
+ "temperature": 1.0,
73
+ "tf_legacy_loss": false,
74
+ "tie_encoder_decoder": false,
75
+ "tie_word_embeddings": true,
76
+ "tokenizer_class": null,
77
+ "top_k": 50,
78
+ "top_p": 1.0,
79
+ "torch_dtype": null,
80
+ "torchscript": false,
81
+ "transformers_version": "4.45.1",
82
+ "type_vocab_size": 2,
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false,
85
+ "use_cache": true,
86
+ "vocab_size": 28903
87
+ },
88
+ "encoder_name": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
89
+ "finetuning_task": [
90
+ "timex",
91
+ "event",
92
+ "tlinkx"
93
+ ],
94
+ "hidden_dropout_prob": 0.1,
95
+ "hidden_size": 768,
96
+ "hier_head_config": null,
97
+ "label_dictionary": {
98
+ "event": [
99
+ "B-AFTER",
100
+ "B-BEFORE",
101
+ "B-BEFORE/OVERLAP",
102
+ "B-OVERLAP",
103
+ "I-AFTER",
104
+ "I-BEFORE",
105
+ "I-BEFORE/OVERLAP",
106
+ "I-OVERLAP",
107
+ "O"
108
+ ],
109
+ "timex": [
110
+ "B-DATE",
111
+ "B-DURATION",
112
+ "B-PREPOSTEXP",
113
+ "B-QUANTIFIER",
114
+ "B-SECTIONTIME",
115
+ "B-SET",
116
+ "B-TIME",
117
+ "I-DATE",
118
+ "I-DURATION",
119
+ "I-PREPOSTEXP",
120
+ "I-QUANTIFIER",
121
+ "I-SECTIONTIME",
122
+ "I-SET",
123
+ "I-TIME",
124
+ "O"
125
+ ],
126
+ "tlinkx": [
127
+ "BEFORE",
128
+ "BEGINS-ON",
129
+ "CONTAINS",
130
+ "CONTAINS-SUBEVENT",
131
+ "ENDS-ON",
132
+ "NOTED-ON",
133
+ "None",
134
+ "OVERLAP"
135
+ ]
136
+ },
137
+ "layer": 11,
138
+ "model_type": "cnlpt",
139
+ "num_rel_attention_heads": 256,
140
+ "rel_attention_head_dims": 64,
141
+ "relations": {
142
+ "event": false,
143
+ "timex": false,
144
+ "tlinkx": true
145
+ },
146
+ "tagger": {
147
+ "event": true,
148
+ "timex": true,
149
+ "tlinkx": false
150
+ },
151
+ "tokens": false,
152
+ "torch_dtype": "float32",
153
+ "transformers_version": "4.45.1",
154
+ "use_prior_tasks": false,
155
+ "vocab_size": 28903
156
+ }
eval_results.txt ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ***** Eval results for task timex *****
4
+
5
+ acc = 0.9799858455029032
6
+ token_f1 = [0.7385976855003403, 0.0, 0.0, 0.0, 0.028169014084507043, 0.0, 0.0, 0.7891593936610014, 0.0, 0.0, 0.8027027027027027, 0.04477611940298507, 0.0, 0.9962215109142981]
7
+ f1 = 0.502874834144184
8
+ report =
9
+ precision recall f1-score support
10
+
11
+ DATE 0.48 0.69 0.57 1266
12
+ DURATION 0.00 0.00 0.00 181
13
+ PREPOSTEXP 0.00 0.00 0.00 159
14
+ QUANTIFIER 0.00 0.00 0.00 99
15
+ SECTIONTIME 0.50 0.94 0.65 279
16
+ SET 0.00 0.00 0.00 139
17
+ TIME 0.00 0.00 0.00 45
18
+
19
+ micro avg 0.48 0.52 0.50 2168
20
+ macro avg 0.14 0.23 0.17 2168
21
+ weighted avg 0.35 0.52 0.41 2168
22
+
23
+
24
+
25
+ ***** Eval results for task event *****
26
+
27
+ acc = 0.93882365475203
28
+ token_f1 = [0.07663896583564174, 0.7170296060680206, 0.2784452296819788, 0.777024647887324, 0.0, 0.0, 0.0, 0.9858847497089639]
29
+ f1 = 0.6977420338108749
30
+ report =
31
+ precision recall f1-score support
32
+
33
+ AFTER 0.64 0.04 0.08 2037
34
+ BEFORE 0.66 0.77 0.71 7586
35
+ BEFORE/OVERLAP 0.94 0.16 0.28 1205
36
+ OVERLAP 0.72 0.83 0.77 10556
37
+
38
+ micro avg 0.70 0.70 0.70 21384
39
+ macro avg 0.74 0.45 0.46 21384
40
+ weighted avg 0.71 0.70 0.66 21384
41
+
42
+
43
+
44
+ ***** Eval results for task tlinkx *****
45
+
46
+ f1 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9996965951435638, 0.0]
47
+ acc = 0.9993933743402987
48
+ recall = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
49
+ precision = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9993933743402987, 0.0]
50
+ report_dict = {'BEFORE': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 300.0}, 'CONTAINS': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 234.0}, 'ENDS-ON': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 125.0}, 'NOTED-ON': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1231.0}, 'None': {'precision': 0.9993933743402987, 'recall': 1.0, 'f1-score': 0.9996965951435638, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1219.0}, 'accuracy': 0.9993933743402987, 'macro avg': {'precision': 0.12492417179253734, 'recall': 0.125, 'f1-score': 0.12496207439294547, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9987871166752885, 'recall': 0.9993933743402987, 'f1-score': 0.9990901535370338, 'support': 12053562.0}}
51
+ report_str = precision recall f1-score support
52
+
53
+ BEFORE 0.00 0.00 0.00 921
54
+ BEGINS-ON 0.00 0.00 0.00 300
55
+ CONTAINS 0.00 0.00 0.00 3282
56
+ CONTAINS-SUBEVENT 0.00 0.00 0.00 234
57
+ ENDS-ON 0.00 0.00 0.00 125
58
+ NOTED-ON 0.00 0.00 0.00 1231
59
+ None 1.00 1.00 1.00 12046250
60
+ OVERLAP 0.00 0.00 0.00 1219
61
+
62
+ accuracy 1.00 12053562
63
+ macro avg 0.12 0.12 0.12 12053562
64
+ weighted avg 1.00 1.00 1.00 12053562
65
+
66
+
67
+
68
+ ***** Eval results for task timex *****
69
+
70
+ acc = 0.993790285144627
71
+ token_f1 = [0.921644685802948, 0.7650273224043715, 0.9556962025316456, 0.29508196721311475, 0.9451327433628318, 0.8518518518518519, 0.0, 0.9454960091220068, 0.821826280623608, 0.3875968992248062, 0.9827682045580878, 0.8625235404896422, 0.0, 0.9982044082380304]
72
+ f1 = 0.8354831409821225
73
+ report =
74
+ precision recall f1-score support
75
+
76
+ DATE 0.85 0.92 0.88 1266
77
+ DURATION 0.56 0.73 0.64 181
78
+ PREPOSTEXP 0.96 0.95 0.96 159
79
+ QUANTIFIER 0.44 0.16 0.24 99
80
+ SECTIONTIME 0.89 0.96 0.92 279
81
+ SET 0.75 0.83 0.79 139
82
+ TIME 0.00 0.00 0.00 45
83
+
84
+ micro avg 0.82 0.85 0.84 2168
85
+ macro avg 0.64 0.65 0.63 2168
86
+ weighted avg 0.80 0.85 0.82 2168
87
+
88
+
89
+
90
+ ***** Eval results for task event *****
91
+
92
+ acc = 0.9624525329700853
93
+ token_f1 = [0.7226107226107226, 0.8515694759255443, 0.6528497409326425, 0.8551680804272699, 0.0, 0.5545454545454546, 0.47342995169082125, 0.9897354608535966]
94
+ f1 = 0.8248494045155654
95
+ report =
96
+ precision recall f1-score support
97
+
98
+ AFTER 0.68 0.76 0.72 2037
99
+ BEFORE 0.88 0.81 0.85 7586
100
+ BEFORE/OVERLAP 0.68 0.63 0.65 1205
101
+ OVERLAP 0.81 0.90 0.85 10556
102
+
103
+ micro avg 0.81 0.84 0.82 21384
104
+ macro avg 0.76 0.77 0.77 21384
105
+ weighted avg 0.81 0.84 0.82 21384
106
+
107
+
108
+
109
+ ***** Eval results for task tlinkx *****
110
+
111
+ f1 = [0.0, 0.365, 0.0018264840182648401, 0.0, 0.3493975903614458, 0.09858103061986558, 0.9997018198367735, 0.046215139442231074]
112
+ acc = 0.9994032469406139
113
+ recall = [0.0, 0.24333333333333335, 0.0009140767824497258, 0.0, 0.232, 0.05361494719740049, 0.9999932759157414, 0.02378999179655455]
114
+ precision = [0.0, 0.73, 1.0, 0.0, 0.7073170731707317, 0.6111111111111112, 0.9994105336027373, 0.8055555555555556]
115
+ report_dict = {'BEFORE': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.73, 'recall': 0.24333333333333335, 'f1-score': 0.365, 'support': 300.0}, 'CONTAINS': {'precision': 1.0, 'recall': 0.0009140767824497258, 'f1-score': 0.0018264840182648401, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 234.0}, 'ENDS-ON': {'precision': 0.7073170731707317, 'recall': 0.232, 'f1-score': 0.3493975903614458, 'support': 125.0}, 'NOTED-ON': {'precision': 0.6111111111111112, 'recall': 0.05361494719740049, 'f1-score': 0.09858103061986558, 'support': 1231.0}, 'None': {'precision': 0.9994105336027373, 'recall': 0.9999932759157414, 'f1-score': 0.9997018198367735, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.8055555555555556, 'recall': 0.02378999179655455, 'f1-score': 0.046215139442231074, 'support': 1219.0}, 'accuracy': 0.9994032469406139, 'macro avg': {'precision': 0.606674284180017, 'recall': 0.19420570312818494, 'f1-score': 0.2325902580348226, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9992459328658301, 'recall': 0.9994032469406139, 'f1-score': 0.9991233218804325, 'support': 12053562.0}}
116
+ report_str = precision recall f1-score support
117
+
118
+ BEFORE 0.00 0.00 0.00 921
119
+ BEGINS-ON 0.73 0.24 0.36 300
120
+ CONTAINS 1.00 0.00 0.00 3282
121
+ CONTAINS-SUBEVENT 0.00 0.00 0.00 234
122
+ ENDS-ON 0.71 0.23 0.35 125
123
+ NOTED-ON 0.61 0.05 0.10 1231
124
+ None 1.00 1.00 1.00 12046250
125
+ OVERLAP 0.81 0.02 0.05 1219
126
+
127
+ accuracy 1.00 12053562
128
+ macro avg 0.61 0.19 0.23 12053562
129
+ weighted avg 1.00 1.00 1.00 12053562
130
+
131
+
132
+
133
+ ***** Eval results for task timex *****
134
+
135
+ acc = 0.9949850464587122
136
+ token_f1 = [0.9296310384176493, 0.8310991957104558, 0.9657320872274143, 0.6, 0.9554367201426025, 0.924187725631769, 0.0, 0.9486166007905138, 0.8910179640718563, 0.6993865030674846, 0.9764705882352941, 0.9467455621301775, 0.02857142857142857, 0.998604963435569]
137
+ f1 = 0.8690210102816273
138
+ report =
139
+ precision recall f1-score support
140
+
141
+ DATE 0.85 0.96 0.90 1266
142
+ DURATION 0.69 0.78 0.73 181
143
+ PREPOSTEXP 0.96 0.97 0.97 159
144
+ QUANTIFIER 0.61 0.46 0.53 99
145
+ SECTIONTIME 0.90 0.96 0.93 279
146
+ SET 0.87 0.90 0.88 139
147
+ TIME 0.00 0.00 0.00 45
148
+
149
+ micro avg 0.84 0.90 0.87 2168
150
+ macro avg 0.70 0.72 0.71 2168
151
+ weighted avg 0.82 0.90 0.86 2168
152
+
153
+
154
+
155
+ ***** Eval results for task event *****
156
+
157
+ acc = 0.9681523815321863
158
+ token_f1 = [0.784816366773478, 0.8632352941176471, 0.6966205837173579, 0.8784914220898908, 0.0, 0.66, 0.7058823529411765, 0.9912774941128779]
159
+ f1 = 0.8501880533557596
160
+ report =
161
+ precision recall f1-score support
162
+
163
+ AFTER 0.78 0.78 0.78 2037
164
+ BEFORE 0.87 0.85 0.86 7586
165
+ BEFORE/OVERLAP 0.65 0.75 0.70 1205
166
+ OVERLAP 0.87 0.88 0.88 10556
167
+
168
+ micro avg 0.85 0.85 0.85 21384
169
+ macro avg 0.79 0.81 0.80 21384
170
+ weighted avg 0.85 0.85 0.85 21384
171
+
172
+
173
+
174
+ ***** Eval results for task tlinkx *****
175
+
176
+ f1 = [0.2232223222322232, 0.5393258426966292, 0.6020362992474546, 0.0, 0.38509316770186336, 0.5560204556020456, 0.9997484948287051, 0.09291698400609291]
177
+ acc = 0.9994896114526146
178
+ recall = [0.13463626492942454, 0.4, 0.6215722120658135, 0.0, 0.248, 0.48578391551584077, 0.999849413717962, 0.05004101722723544]
179
+ precision = [0.6526315789473685, 0.8275862068965517, 0.5836909871244635, 0.0, 0.8611111111111112, 0.65, 0.9996475963097042, 0.648936170212766]
180
+ report_dict = {'BEFORE': {'precision': 0.6526315789473685, 'recall': 0.13463626492942454, 'f1-score': 0.2232223222322232, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.8275862068965517, 'recall': 0.4, 'f1-score': 0.5393258426966292, 'support': 300.0}, 'CONTAINS': {'precision': 0.5836909871244635, 'recall': 0.6215722120658135, 'f1-score': 0.6020362992474546, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 234.0}, 'ENDS-ON': {'precision': 0.8611111111111112, 'recall': 0.248, 'f1-score': 0.38509316770186336, 'support': 125.0}, 'NOTED-ON': {'precision': 0.65, 'recall': 0.48578391551584077, 'f1-score': 0.5560204556020456, 'support': 1231.0}, 'None': {'precision': 0.9996475963097042, 'recall': 0.999849413717962, 'f1-score': 0.9997484948287051, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.648936170212766, 'recall': 0.05004101722723544, 'f1-score': 0.09291698400609291, 'support': 1219.0}, 'accuracy': 0.9994896114526146, 'macro avg': {'precision': 0.6529504563252457, 'recall': 0.36748535293203455, 'f1-score': 0.4247954457893768, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9994115202205104, 'recall': 0.9994896114526146, 'f1-score': 0.9994066018083547, 'support': 12053562.0}}
181
+ report_str = precision recall f1-score support
182
+
183
+ BEFORE 0.65 0.13 0.22 921
184
+ BEGINS-ON 0.83 0.40 0.54 300
185
+ CONTAINS 0.58 0.62 0.60 3282
186
+ CONTAINS-SUBEVENT 0.00 0.00 0.00 234
187
+ ENDS-ON 0.86 0.25 0.39 125
188
+ NOTED-ON 0.65 0.49 0.56 1231
189
+ None 1.00 1.00 1.00 12046250
190
+ OVERLAP 0.65 0.05 0.09 1219
191
+
192
+ accuracy 1.00 12053562
193
+ macro avg 0.65 0.37 0.42 12053562
194
+ weighted avg 1.00 1.00 1.00 12053562
195
+
196
+
197
+
198
+ ***** Eval results for task timex *****
199
+
200
+ acc = 0.9958221403730395
201
+ token_f1 = [0.942714340638216, 0.8739495798319328, 0.9554140127388535, 0.6628571428571428, 0.9557522123893806, 0.9520295202952029, 0.15384615384615385, 0.9556933983163491, 0.908433734939759, 0.770949720670391, 0.9873914261697955, 0.9577464788732394, 0.15789473684210525, 0.998786241931724]
202
+ f1 = 0.8839729119638827
203
+ report =
204
+ precision recall f1-score support
205
+
206
+ DATE 0.87 0.96 0.91 1266
207
+ DURATION 0.78 0.79 0.78 181
208
+ PREPOSTEXP 0.97 0.94 0.96 159
209
+ QUANTIFIER 0.63 0.53 0.57 99
210
+ SECTIONTIME 0.90 0.97 0.93 279
211
+ SET 0.93 0.91 0.92 139
212
+ TIME 0.33 0.09 0.14 45
213
+
214
+ micro avg 0.87 0.90 0.88 2168
215
+ macro avg 0.77 0.74 0.75 2168
216
+ weighted avg 0.86 0.90 0.88 2168
217
+
218
+
219
+
220
+ ***** Eval results for task event *****
221
+
222
+ acc = 0.9698798389735707
223
+ token_f1 = [0.7794040773653946, 0.8727873820511054, 0.7074536837570012, 0.8842710997442456, 0.3, 0.7914438502673797, 0.708171206225681, 0.9914910269010957]
224
+ f1 = 0.858947566158687
225
+ report =
226
+ precision recall f1-score support
227
+
228
+ AFTER 0.83 0.73 0.78 2037
229
+ BEFORE 0.91 0.83 0.87 7586
230
+ BEFORE/OVERLAP 0.74 0.68 0.71 1205
231
+ OVERLAP 0.85 0.92 0.88 10556
232
+
233
+ micro avg 0.86 0.86 0.86 21384
234
+ macro avg 0.83 0.79 0.81 21384
235
+ weighted avg 0.86 0.86 0.86 21384
236
+
237
+
238
+
239
+ ***** Eval results for task tlinkx *****
240
+
241
+ f1 = [0.2719082719082719, 0.5821205821205822, 0.6561687373591447, 0.04580152671755725, 0.46994535519125685, 0.6503616947984844, 0.9997600617489245, 0.17068134893324158]
242
+ acc = 0.9995097714683842
243
+ recall = [0.18023887079261672, 0.4666666666666667, 0.6919561243144424, 0.02564102564102564, 0.344, 0.7668562144597888, 0.9998098163328837, 0.10172272354388844]
244
+ precision = [0.5533333333333333, 0.7734806629834254, 0.6239010989010989, 0.21428571428571427, 0.7413793103448276, 0.5645933014354066, 0.9997103121166979, 0.5299145299145299]
245
+ report_dict = {'BEFORE': {'precision': 0.5533333333333333, 'recall': 0.18023887079261672, 'f1-score': 0.2719082719082719, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7734806629834254, 'recall': 0.4666666666666667, 'f1-score': 0.5821205821205822, 'support': 300.0}, 'CONTAINS': {'precision': 0.6239010989010989, 'recall': 0.6919561243144424, 'f1-score': 0.6561687373591447, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.21428571428571427, 'recall': 0.02564102564102564, 'f1-score': 0.04580152671755725, 'support': 234.0}, 'ENDS-ON': {'precision': 0.7413793103448276, 'recall': 0.344, 'f1-score': 0.46994535519125685, 'support': 125.0}, 'NOTED-ON': {'precision': 0.5645933014354066, 'recall': 0.7668562144597888, 'f1-score': 0.6503616947984844, 'support': 1231.0}, 'None': {'precision': 0.9997103121166979, 'recall': 0.9998098163328837, 'f1-score': 0.9997600617489245, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.5299145299145299, 'recall': 0.10172272354388844, 'f1-score': 0.17068134893324158, 'support': 1219.0}, 'accuracy': 0.9995097714683842, 'macro avg': {'precision': 0.6250747829143792, 'recall': 0.4471114302189141, 'f1-score': 0.48084344734718293, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9994583717558536, 'recall': 0.9995097714683842, 'f1-score': 0.9994569547051201, 'support': 12053562.0}}
246
+ report_str = precision recall f1-score support
247
+
248
+ BEFORE 0.55 0.18 0.27 921
249
+ BEGINS-ON 0.77 0.47 0.58 300
250
+ CONTAINS 0.62 0.69 0.66 3282
251
+ CONTAINS-SUBEVENT 0.21 0.03 0.05 234
252
+ ENDS-ON 0.74 0.34 0.47 125
253
+ NOTED-ON 0.56 0.77 0.65 1231
254
+ None 1.00 1.00 1.00 12046250
255
+ OVERLAP 0.53 0.10 0.17 1219
256
+
257
+ accuracy 1.00 12053562
258
+ macro avg 0.63 0.45 0.48 12053562
259
+ weighted avg 1.00 1.00 1.00 12053562
260
+
261
+
262
+
263
+ ***** Eval results for task timex *****
264
+
265
+ acc = 0.9958221403730395
266
+ token_f1 = [0.9470795766366131, 0.8657534246575342, 0.9587301587301588, 0.7810650887573964, 0.975177304964539, 0.9285714285714286, 0.47761194029850745, 0.9587881488081978, 0.9106078665077473, 0.8557213930348259, 0.9823874755381604, 0.911487758945386, 0.17647058823529413, 0.9987457992314]
267
+ f1 = 0.8815996405302179
268
+ report =
269
+ precision recall f1-score support
270
+
271
+ DATE 0.88 0.94 0.91 1266
272
+ DURATION 0.75 0.81 0.78 181
273
+ PREPOSTEXP 0.97 0.95 0.96 159
274
+ QUANTIFIER 0.75 0.65 0.70 99
275
+ SECTIONTIME 0.89 0.97 0.93 279
276
+ SET 0.81 0.91 0.85 139
277
+ TIME 0.25 0.20 0.22 45
278
+
279
+ micro avg 0.86 0.90 0.88 2168
280
+ macro avg 0.76 0.78 0.77 2168
281
+ weighted avg 0.86 0.90 0.88 2168
282
+
283
+
284
+
285
+ ***** Eval results for task event *****
286
+
287
+ acc = 0.97117352956844
288
+ token_f1 = [0.8047846889952153, 0.881969775924961, 0.6880256307569083, 0.8921853790963739, 0.625, 0.8097560975609757, 0.6795366795366795, 0.9917821939948553]
289
+ f1 = 0.8658856607310216
290
+ report =
291
+ precision recall f1-score support
292
+
293
+ AFTER 0.78 0.82 0.80 2037
294
+ BEFORE 0.87 0.89 0.88 7586
295
+ BEFORE/OVERLAP 0.66 0.71 0.69 1205
296
+ OVERLAP 0.91 0.87 0.89 10556
297
+
298
+ micro avg 0.87 0.86 0.87 21384
299
+ macro avg 0.81 0.82 0.82 21384
300
+ weighted avg 0.87 0.86 0.87 21384
301
+
302
+
303
+
304
+ ***** Eval results for task tlinkx *****
305
+
306
+ f1 = [0.2663316582914573, 0.610752688172043, 0.6763110307414105, 0.14067278287461774, 0.45652173913043476, 0.6958970233306516, 0.9997787860559014, 0.1986754966887417]
307
+ acc = 0.999548598165422
308
+ recall = [0.17263843648208468, 0.47333333333333333, 0.6837294332723949, 0.09829059829059829, 0.336, 0.7026807473598701, 0.9998543945211166, 0.12305168170631665]
309
+ precision = [0.5824175824175825, 0.8606060606060606, 0.669051878354204, 0.24731182795698925, 0.711864406779661, 0.6892430278884463, 0.9997031890247667, 0.5154639175257731]
310
+ report_dict = {'BEFORE': {'precision': 0.5824175824175825, 'recall': 0.17263843648208468, 'f1-score': 0.2663316582914573, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.8606060606060606, 'recall': 0.47333333333333333, 'f1-score': 0.610752688172043, 'support': 300.0}, 'CONTAINS': {'precision': 0.669051878354204, 'recall': 0.6837294332723949, 'f1-score': 0.6763110307414105, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.24731182795698925, 'recall': 0.09829059829059829, 'f1-score': 0.14067278287461774, 'support': 234.0}, 'ENDS-ON': {'precision': 0.711864406779661, 'recall': 0.336, 'f1-score': 0.45652173913043476, 'support': 125.0}, 'NOTED-ON': {'precision': 0.6892430278884463, 'recall': 0.7026807473598701, 'f1-score': 0.6958970233306516, 'support': 1231.0}, 'None': {'precision': 0.9997031890247667, 'recall': 0.9998543945211166, 'f1-score': 0.9997787860559014, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.5154639175257731, 'recall': 0.12305168170631665, 'f1-score': 0.1986754966887417, 'support': 1219.0}, 'accuracy': 0.999548598165422, 'macro avg': {'precision': 0.6594577363191854, 'recall': 0.4486973281207143, 'f1-score': 0.5056176506606573, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9994795414141752, 'recall': 0.999548598165422, 'f1-score': 0.9994906226812705, 'support': 12053562.0}}
311
+ report_str = precision recall f1-score support
312
+
313
+ BEFORE 0.58 0.17 0.27 921
314
+ BEGINS-ON 0.86 0.47 0.61 300
315
+ CONTAINS 0.67 0.68 0.68 3282
316
+ CONTAINS-SUBEVENT 0.25 0.10 0.14 234
317
+ ENDS-ON 0.71 0.34 0.46 125
318
+ NOTED-ON 0.69 0.70 0.70 1231
319
+ None 1.00 1.00 1.00 12046250
320
+ OVERLAP 0.52 0.12 0.20 1219
321
+
322
+ accuracy 1.00 12053562
323
+ macro avg 0.66 0.45 0.51 12053562
324
+ weighted avg 1.00 1.00 1.00 12053562
325
+
326
+
327
+
328
+ ***** Eval results for task timex *****
329
+
330
+ acc = 0.9958678000410937
331
+ token_f1 = [0.9420909444228527, 0.8457446808510638, 0.9652996845425867, 0.7027027027027027, 0.9717314487632509, 0.9454545454545454, 0.4383561643835616, 0.9611872146118722, 0.8883977900552487, 0.7878787878787878, 0.9902370990237099, 0.9488188976377953, 0.4424778761061947, 0.9987779385753337]
332
+ f1 = 0.8848920863309352
333
+ report =
334
+ precision recall f1-score support
335
+
336
+ DATE 0.89 0.94 0.91 1266
337
+ DURATION 0.72 0.84 0.78 181
338
+ PREPOSTEXP 0.97 0.96 0.97 159
339
+ QUANTIFIER 0.60 0.60 0.60 99
340
+ SECTIONTIME 0.94 0.99 0.96 279
341
+ SET 0.90 0.92 0.91 139
342
+ TIME 0.33 0.33 0.33 45
343
+
344
+ micro avg 0.86 0.91 0.88 2168
345
+ macro avg 0.76 0.80 0.78 2168
346
+ weighted avg 0.86 0.91 0.89 2168
347
+
348
+
349
+
350
+ ***** Eval results for task event *****
351
+
352
+ acc = 0.9720334533167944
353
+ token_f1 = [0.8064823641563393, 0.8820368131129921, 0.7421328671328671, 0.8930716481437692, 0.6666666666666666, 0.8102564102564103, 0.725, 0.9917656157590646]
354
+ f1 = 0.8706734386756959
355
+ report =
356
+ precision recall f1-score support
357
+
358
+ AFTER 0.78 0.83 0.80 2037
359
+ BEFORE 0.90 0.86 0.88 7586
360
+ BEFORE/OVERLAP 0.78 0.70 0.74 1205
361
+ OVERLAP 0.89 0.89 0.89 10556
362
+
363
+ micro avg 0.88 0.87 0.87 21384
364
+ macro avg 0.84 0.82 0.83 21384
365
+ weighted avg 0.88 0.87 0.87 21384
366
+
367
+
368
+
369
+ ***** Eval results for task tlinkx *****
370
+
371
+ f1 = [0.29307568438003223, 0.6209677419354839, 0.6979390956628729, 0.125, 0.49162011173184356, 0.702475870751154, 0.9997883335425096, 0.1899070385126162]
372
+ acc = 0.999567928550913
373
+ recall = [0.1976112920738328, 0.5133333333333333, 0.6913467397928093, 0.0811965811965812, 0.352, 0.6799350121852152, 0.9998718273321573, 0.1173092698933552]
374
+ precision = [0.5669781931464174, 0.7857142857142857, 0.7046583850931677, 0.2714285714285714, 0.8148148148148148, 0.7265625, 0.9997048536959107, 0.49825783972125437]
375
+ report_dict = {'BEFORE': {'precision': 0.5669781931464174, 'recall': 0.1976112920738328, 'f1-score': 0.29307568438003223, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7857142857142857, 'recall': 0.5133333333333333, 'f1-score': 0.6209677419354839, 'support': 300.0}, 'CONTAINS': {'precision': 0.7046583850931677, 'recall': 0.6913467397928093, 'f1-score': 0.6979390956628729, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.2714285714285714, 'recall': 0.0811965811965812, 'f1-score': 0.125, 'support': 234.0}, 'ENDS-ON': {'precision': 0.8148148148148148, 'recall': 0.352, 'f1-score': 0.49162011173184356, 'support': 125.0}, 'NOTED-ON': {'precision': 0.7265625, 'recall': 0.6799350121852152, 'f1-score': 0.702475870751154, 'support': 1231.0}, 'None': {'precision': 0.9997048536959107, 'recall': 0.9998718273321573, 'f1-score': 0.9997883335425096, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.49825783972125437, 'recall': 0.1173092698933552, 'f1-score': 0.1899070385126162, 'support': 1219.0}, 'accuracy': 0.999567928550913, 'macro avg': {'precision': 0.6710149304518027, 'recall': 0.45407550697591054, 'f1-score': 0.5150967345645641, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9994914635804361, 'recall': 0.999567928550913, 'f1-score': 0.999508195923091, 'support': 12053562.0}}
376
+ report_str = precision recall f1-score support
377
+
378
+ BEFORE 0.57 0.20 0.29 921
379
+ BEGINS-ON 0.79 0.51 0.62 300
380
+ CONTAINS 0.70 0.69 0.70 3282
381
+ CONTAINS-SUBEVENT 0.27 0.08 0.12 234
382
+ ENDS-ON 0.81 0.35 0.49 125
383
+ NOTED-ON 0.73 0.68 0.70 1231
384
+ None 1.00 1.00 1.00 12046250
385
+ OVERLAP 0.50 0.12 0.19 1219
386
+
387
+ accuracy 1.00 12053562
388
+ macro avg 0.67 0.45 0.52 12053562
389
+ weighted avg 1.00 1.00 1.00 12053562
390
+
391
+
392
+
393
+ ***** Eval results for task timex *****
394
+
395
+ acc = 0.9960960983813648
396
+ token_f1 = [0.9455115640925127, 0.8681318681318682, 0.9587301587301588, 0.6745562130177515, 0.9769094138543517, 0.9446494464944649, 0.46153846153846156, 0.9683257918552036, 0.9248826291079812, 0.7597765363128491, 0.9856540084388186, 0.9558232931726908, 0.3125, 0.9988226832375006]
397
+ f1 = 0.8911116162764265
398
+ report =
399
+ precision recall f1-score support
400
+
401
+ DATE 0.90 0.94 0.92 1266
402
+ DURATION 0.78 0.85 0.81 181
403
+ PREPOSTEXP 0.97 0.95 0.96 159
404
+ QUANTIFIER 0.65 0.52 0.57 99
405
+ SECTIONTIME 0.94 0.97 0.95 279
406
+ SET 0.91 0.90 0.90 139
407
+ TIME 0.27 0.29 0.28 45
408
+
409
+ micro avg 0.88 0.90 0.89 2168
410
+ macro avg 0.77 0.77 0.77 2168
411
+ weighted avg 0.88 0.90 0.89 2168
412
+
413
+
414
+
415
+ ***** Eval results for task event *****
416
+
417
+ acc = 0.9715768566362523
418
+ token_f1 = [0.8040687817873577, 0.8803781858043299, 0.738509076863654, 0.891389983117614, 0.6415094339622641, 0.8241206030150754, 0.6810344827586207, 0.9918340221765016]
419
+ f1 = 0.8679280673372254
420
+ report =
421
+ precision recall f1-score support
422
+
423
+ AFTER 0.79 0.81 0.80 2037
424
+ BEFORE 0.91 0.85 0.88 7586
425
+ BEFORE/OVERLAP 0.69 0.79 0.74 1205
426
+ OVERLAP 0.88 0.90 0.89 10556
427
+
428
+ micro avg 0.87 0.87 0.87 21384
429
+ macro avg 0.82 0.84 0.83 21384
430
+ weighted avg 0.87 0.87 0.87 21384
431
+
432
+
433
+
434
+ ***** Eval results for task tlinkx *****
435
+
436
+ f1 = [0.33640880056777855, 0.6536203522504892, 0.7054409005628518, 0.20178041543026706, 0.5026178010471204, 0.722010662604722, 0.9997896985667005, 0.2531493701259748]
437
+ acc = 0.999568509292108
438
+ recall = [0.25732899022801303, 0.5566666666666666, 0.6873857404021938, 0.1452991452991453, 0.384, 0.7701056051990252, 0.9998514060392238, 0.17309269893355209]
439
+ precision = [0.48565573770491804, 0.7914691943127962, 0.7244701348747592, 0.3300970873786408, 0.7272727272727273, 0.6795698924731183, 0.9997279987104633, 0.47098214285714285]
440
+ report_dict = {'BEFORE': {'precision': 0.48565573770491804, 'recall': 0.25732899022801303, 'f1-score': 0.33640880056777855, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7914691943127962, 'recall': 0.5566666666666666, 'f1-score': 0.6536203522504892, 'support': 300.0}, 'CONTAINS': {'precision': 0.7244701348747592, 'recall': 0.6873857404021938, 'f1-score': 0.7054409005628518, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.3300970873786408, 'recall': 0.1452991452991453, 'f1-score': 0.20178041543026706, 'support': 234.0}, 'ENDS-ON': {'precision': 0.7272727272727273, 'recall': 0.384, 'f1-score': 0.5026178010471204, 'support': 125.0}, 'NOTED-ON': {'precision': 0.6795698924731183, 'recall': 0.7701056051990252, 'f1-score': 0.722010662604722, 'support': 1231.0}, 'None': {'precision': 0.9997279987104633, 'recall': 0.9998514060392238, 'f1-score': 0.9997896985667005, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.47098214285714285, 'recall': 0.17309269893355209, 'f1-score': 0.2531493701259748, 'support': 1219.0}, 'accuracy': 0.999568509292108, 'macro avg': {'precision': 0.6511556144480708, 'recall': 0.49671628159597747, 'f1-score': 0.546852250144488, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9995065918871474, 'recall': 0.999568509292108, 'f1-score': 0.9995257219447622, 'support': 12053562.0}}
441
+ report_str = precision recall f1-score support
442
+
443
+ BEFORE 0.49 0.26 0.34 921
444
+ BEGINS-ON 0.79 0.56 0.65 300
445
+ CONTAINS 0.72 0.69 0.71 3282
446
+ CONTAINS-SUBEVENT 0.33 0.15 0.20 234
447
+ ENDS-ON 0.73 0.38 0.50 125
448
+ NOTED-ON 0.68 0.77 0.72 1231
449
+ None 1.00 1.00 1.00 12046250
450
+ OVERLAP 0.47 0.17 0.25 1219
451
+
452
+ accuracy 1.00 12053562
453
+ macro avg 0.65 0.50 0.55 12053562
454
+ weighted avg 1.00 1.00 1.00 12053562
455
+
456
+
457
+
458
+ ***** Eval results for task timex *****
459
+
460
+ acc = 0.9963243967216359
461
+ token_f1 = [0.9476971116315379, 0.8681318681318682, 0.9652996845425867, 0.7570621468926554, 0.9786476868327402, 0.9520295202952029, 0.47368421052631576, 0.967712596634834, 0.9150174621653085, 0.826530612244898, 0.9871003925967471, 0.9582504970178927, 0.3484848484848485, 0.9989430577379828]
462
+ f1 = 0.8950827101744844
463
+ report =
464
+ precision recall f1-score support
465
+
466
+ DATE 0.90 0.94 0.92 1266
467
+ DURATION 0.79 0.85 0.82 181
468
+ PREPOSTEXP 0.97 0.96 0.97 159
469
+ QUANTIFIER 0.67 0.61 0.63 99
470
+ SECTIONTIME 0.95 0.98 0.96 279
471
+ SET 0.92 0.91 0.92 139
472
+ TIME 0.28 0.31 0.29 45
473
+
474
+ micro avg 0.88 0.91 0.90 2168
475
+ macro avg 0.78 0.79 0.79 2168
476
+ weighted avg 0.88 0.91 0.89 2168
477
+
478
+
479
+
480
+ ***** Eval results for task event *****
481
+
482
+ acc = 0.9723074113251197
483
+ token_f1 = [0.8126077320856931, 0.8837178814892501, 0.7230639730639731, 0.8948974725798761, 0.6538461538461539, 0.8140703517587939, 0.7301587301587301, 0.991996284965035]
484
+ f1 = 0.8716783052912781
485
+ report =
486
+ precision recall f1-score support
487
+
488
+ AFTER 0.81 0.81 0.81 2037
489
+ BEFORE 0.88 0.89 0.88 7586
490
+ BEFORE/OVERLAP 0.73 0.71 0.72 1205
491
+ OVERLAP 0.90 0.89 0.89 10556
492
+
493
+ micro avg 0.87 0.87 0.87 21384
494
+ macro avg 0.83 0.82 0.83 21384
495
+ weighted avg 0.87 0.87 0.87 21384
496
+
497
+
498
+
499
+ ***** Eval results for task tlinkx *****
500
+
501
+ f1 = [0.3630229419703104, 0.6527514231499051, 0.713383643924226, 0.17034700315457413, 0.5238095238095238, 0.7317466720451795, 0.9997931435212086, 0.24133663366336633]
502
+ acc = 0.9995758100385596
503
+ recall = [0.2920738327904452, 0.5733333333333334, 0.7056672760511883, 0.11538461538461539, 0.44, 0.7367993501218522, 0.9998553906817474, 0.15996718621821165]
504
+ precision = [0.47950089126559714, 0.7577092511013216, 0.7212706322018063, 0.3253012048192771, 0.6470588235294118, 0.7267628205128205, 0.9997309041107261, 0.491183879093199]
505
+ report_dict = {'BEFORE': {'precision': 0.47950089126559714, 'recall': 0.2920738327904452, 'f1-score': 0.3630229419703104, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7577092511013216, 'recall': 0.5733333333333334, 'f1-score': 0.6527514231499051, 'support': 300.0}, 'CONTAINS': {'precision': 0.7212706322018063, 'recall': 0.7056672760511883, 'f1-score': 0.713383643924226, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.3253012048192771, 'recall': 0.11538461538461539, 'f1-score': 0.17034700315457413, 'support': 234.0}, 'ENDS-ON': {'precision': 0.6470588235294118, 'recall': 0.44, 'f1-score': 0.5238095238095238, 'support': 125.0}, 'NOTED-ON': {'precision': 0.7267628205128205, 'recall': 0.7367993501218522, 'f1-score': 0.7317466720451795, 'support': 1231.0}, 'None': {'precision': 0.9997309041107261, 'recall': 0.9998553906817474, 'f1-score': 0.9997931435212086, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.491183879093199, 'recall': 0.15996718621821165, 'f1-score': 0.24133663366336633, 'support': 1219.0}, 'accuracy': 0.9995758100385596, 'macro avg': {'precision': 0.6435648008292699, 'recall': 0.5028851230726742, 'f1-score': 0.5495238731547867, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9995132515990246, 'recall': 0.9995758100385596, 'f1-score': 0.9995327486362252, 'support': 12053562.0}}
506
+ report_str = precision recall f1-score support
507
+
508
+ BEFORE 0.48 0.29 0.36 921
509
+ BEGINS-ON 0.76 0.57 0.65 300
510
+ CONTAINS 0.72 0.71 0.71 3282
511
+ CONTAINS-SUBEVENT 0.33 0.12 0.17 234
512
+ ENDS-ON 0.65 0.44 0.52 125
513
+ NOTED-ON 0.73 0.74 0.73 1231
514
+ None 1.00 1.00 1.00 12046250
515
+ OVERLAP 0.49 0.16 0.24 1219
516
+
517
+ accuracy 1.00 12053562
518
+ macro avg 0.64 0.50 0.55 12053562
519
+ weighted avg 1.00 1.00 1.00 12053562
520
+
521
+
522
+
523
+ ***** Eval results for task timex *****
524
+
525
+ acc = 0.9962330773855274
526
+ token_f1 = [0.9456394211967148, 0.8666666666666667, 0.9652996845425867, 0.7333333333333333, 0.9769094138543517, 0.9481481481481482, 0.4473684210526316, 0.967391304347826, 0.9205607476635514, 0.8082901554404145, 0.9871148459383754, 0.9596774193548387, 0.3089430894308943, 0.9988948588835261]
527
+ f1 = 0.8937812074443939
528
+ report =
529
+ precision recall f1-score support
530
+
531
+ DATE 0.90 0.94 0.92 1266
532
+ DURATION 0.80 0.84 0.82 181
533
+ PREPOSTEXP 0.97 0.96 0.97 159
534
+ QUANTIFIER 0.62 0.59 0.60 99
535
+ SECTIONTIME 0.94 0.98 0.96 279
536
+ SET 0.94 0.90 0.92 139
537
+ TIME 0.24 0.27 0.26 45
538
+
539
+ micro avg 0.88 0.91 0.89 2168
540
+ macro avg 0.77 0.78 0.78 2168
541
+ weighted avg 0.88 0.91 0.89 2168
542
+
543
+
544
+
545
+ ***** Eval results for task event *****
546
+
547
+ acc = 0.9722541417123898
548
+ token_f1 = [0.8115595892046812, 0.8836833602584814, 0.7373233582709892, 0.8940456578018358, 0.6538461538461539, 0.8223350253807107, 0.7116104868913857, 0.9919764667310249]
549
+ f1 = 0.8714442909652799
550
+ report =
551
+ precision recall f1-score support
552
+
553
+ AFTER 0.79 0.83 0.81 2037
554
+ BEFORE 0.90 0.86 0.88 7586
555
+ BEFORE/OVERLAP 0.74 0.74 0.74 1205
556
+ OVERLAP 0.89 0.90 0.89 10556
557
+
558
+ micro avg 0.87 0.87 0.87 21384
559
+ macro avg 0.83 0.83 0.83 21384
560
+ weighted avg 0.87 0.87 0.87 21384
561
+
562
+
563
+
564
+ ***** Eval results for task tlinkx *****
565
+
566
+ f1 = [0.3551532033426184, 0.6679174484052532, 0.713523402957768, 0.1978021978021978, 0.5288461538461539, 0.7362505018065034, 0.9997928094933096, 0.2810198300283286]
567
+ acc = 0.9995731552216681
568
+ recall = [0.2768729641693811, 0.5933333333333334, 0.7129798903107861, 0.15384615384615385, 0.44, 0.7449228269699432, 0.9998454290754384, 0.20344544708777687]
569
+ precision = [0.49514563106796117, 0.7639484978540773, 0.7140677448886177, 0.27692307692307694, 0.6626506024096386, 0.7277777777777777, 0.9997401954493863, 0.4542124542124542]
570
+ report_dict = {'BEFORE': {'precision': 0.49514563106796117, 'recall': 0.2768729641693811, 'f1-score': 0.3551532033426184, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7639484978540773, 'recall': 0.5933333333333334, 'f1-score': 0.6679174484052532, 'support': 300.0}, 'CONTAINS': {'precision': 0.7140677448886177, 'recall': 0.7129798903107861, 'f1-score': 0.713523402957768, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.27692307692307694, 'recall': 0.15384615384615385, 'f1-score': 0.1978021978021978, 'support': 234.0}, 'ENDS-ON': {'precision': 0.6626506024096386, 'recall': 0.44, 'f1-score': 0.5288461538461539, 'support': 125.0}, 'NOTED-ON': {'precision': 0.7277777777777777, 'recall': 0.7449228269699432, 'f1-score': 0.7362505018065034, 'support': 1231.0}, 'None': {'precision': 0.9997401954493863, 'recall': 0.9998454290754384, 'f1-score': 0.9997928094933096, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.4542124542124542, 'recall': 0.20344544708777687, 'f1-score': 0.2810198300283286, 'support': 1219.0}, 'accuracy': 0.9995731552216681, 'macro avg': {'precision': 0.6368082475728738, 'recall': 0.5156557555991016, 'f1-score': 0.5600381934602666, 'support': 12053562.0}, 'weighted avg': {'precision': 0.999517513926414, 'recall': 0.9995731552216681, 'f1-score': 0.9995372874446685, 'support': 12053562.0}}
571
+ report_str = precision recall f1-score support
572
+
573
+ BEFORE 0.50 0.28 0.36 921
574
+ BEGINS-ON 0.76 0.59 0.67 300
575
+ CONTAINS 0.71 0.71 0.71 3282
576
+ CONTAINS-SUBEVENT 0.28 0.15 0.20 234
577
+ ENDS-ON 0.66 0.44 0.53 125
578
+ NOTED-ON 0.73 0.74 0.74 1231
579
+ None 1.00 1.00 1.00 12046250
580
+ OVERLAP 0.45 0.20 0.28 1219
581
+
582
+ accuracy 1.00 12053562
583
+ macro avg 0.64 0.52 0.56 12053562
584
+ weighted avg 1.00 1.00 1.00 12053562
585
+
586
+
587
+
588
+ ***** Eval results for task timex *****
589
+
590
+ acc = 0.9962863469982574
591
+ token_f1 = [0.9467133411124076, 0.8746518105849582, 0.9717868338557993, 0.73224043715847, 0.9769094138543517, 0.9516728624535316, 0.4266666666666667, 0.9680923285811269, 0.9263157894736842, 0.8167539267015707, 0.9862629660779366, 0.9617706237424547, 0.30158730158730157, 0.9989068402861506]
592
+ f1 = 0.8956305184514375
593
+ report =
594
+ precision recall f1-score support
595
+
596
+ DATE 0.90 0.95 0.92 1266
597
+ DURATION 0.81 0.85 0.83 181
598
+ PREPOSTEXP 0.97 0.97 0.97 159
599
+ QUANTIFIER 0.62 0.59 0.60 99
600
+ SECTIONTIME 0.94 0.98 0.96 279
601
+ SET 0.94 0.90 0.92 139
602
+ TIME 0.24 0.27 0.25 45
603
+
604
+ micro avg 0.88 0.91 0.90 2168
605
+ macro avg 0.78 0.79 0.78 2168
606
+ weighted avg 0.88 0.91 0.90 2168
607
+
608
+
609
+
610
+ ***** Eval results for task event *****
611
+
612
+ acc = 0.9724063406059038
613
+ token_f1 = [0.8119243819680078, 0.8850328286211979, 0.7399507793273175, 0.8942812544345111, 0.6415094339622641, 0.8223350253807107, 0.714859437751004, 0.9919611806048688]
614
+ f1 = 0.8724382122590628
615
+ report =
616
+ precision recall f1-score support
617
+
618
+ AFTER 0.80 0.82 0.81 2037
619
+ BEFORE 0.90 0.87 0.88 7586
620
+ BEFORE/OVERLAP 0.73 0.75 0.74 1205
621
+ OVERLAP 0.89 0.89 0.89 10556
622
+
623
+ micro avg 0.87 0.87 0.87 21384
624
+ macro avg 0.83 0.83 0.83 21384
625
+ weighted avg 0.88 0.87 0.87 21384
626
+
627
+
628
+
629
+ ***** Eval results for task tlinkx *****
630
+
631
+ f1 = [0.36606546426185704, 0.6666666666666666, 0.7110640230059029, 0.2185792349726776, 0.5308056872037915, 0.7366758784050533, 0.999791314135728, 0.284077892325315]
632
+ acc = 0.9995700026266094
633
+ recall = [0.2975027144408252, 0.5933333333333334, 0.7157221206581352, 0.17094017094017094, 0.448, 0.7579203899268887, 0.9998382069108643, 0.20344544708777687]
634
+ precision = [0.4756944444444444, 0.7606837606837606, 0.7064661654135338, 0.30303030303030304, 0.6511627906976745, 0.716589861751152, 0.9997444257589617, 0.47058823529411764]
635
+ report_dict = {'BEFORE': {'precision': 0.4756944444444444, 'recall': 0.2975027144408252, 'f1-score': 0.36606546426185704, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7606837606837606, 'recall': 0.5933333333333334, 'f1-score': 0.6666666666666666, 'support': 300.0}, 'CONTAINS': {'precision': 0.7064661654135338, 'recall': 0.7157221206581352, 'f1-score': 0.7110640230059029, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.30303030303030304, 'recall': 0.17094017094017094, 'f1-score': 0.2185792349726776, 'support': 234.0}, 'ENDS-ON': {'precision': 0.6511627906976745, 'recall': 0.448, 'f1-score': 0.5308056872037915, 'support': 125.0}, 'NOTED-ON': {'precision': 0.716589861751152, 'recall': 0.7579203899268887, 'f1-score': 0.7366758784050533, 'support': 1231.0}, 'None': {'precision': 0.9997444257589617, 'recall': 0.9998382069108643, 'f1-score': 0.999791314135728, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.47058823529411764, 'recall': 0.20344544708777687, 'f1-score': 0.284077892325315, 'support': 1219.0}, 'accuracy': 0.9995700026266094, 'macro avg': {'precision': 0.6354949983842435, 'recall': 0.5233377979122493, 'f1-score': 0.564215770122124, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9995190055921814, 'recall': 0.9995700026266094, 'f1-score': 0.9995367023899284, 'support': 12053562.0}}
636
+ report_str = precision recall f1-score support
637
+
638
+ BEFORE 0.48 0.30 0.37 921
639
+ BEGINS-ON 0.76 0.59 0.67 300
640
+ CONTAINS 0.71 0.72 0.71 3282
641
+ CONTAINS-SUBEVENT 0.30 0.17 0.22 234
642
+ ENDS-ON 0.65 0.45 0.53 125
643
+ NOTED-ON 0.72 0.76 0.74 1231
644
+ None 1.00 1.00 1.00 12046250
645
+ OVERLAP 0.47 0.20 0.28 1219
646
+
647
+ accuracy 1.00 12053562
648
+ macro avg 0.64 0.52 0.56 12053562
649
+ weighted avg 1.00 1.00 1.00 12053562
650
+
651
+ timex = {'acc': 0.9962863469982574, 'token_f1': [0.9467133411124076, 0.8746518105849582, 0.9717868338557993, 0.73224043715847, 0.9769094138543517, 0.9516728624535316, 0.4266666666666667, 0.9680923285811269, 0.9263157894736842, 0.8167539267015707, 0.9862629660779366, 0.9617706237424547, 0.30158730158730157, 0.9989068402861506], 'f1': 0.8956305184514375, 'report': '\n precision recall f1-score support\n\n DATE 0.90 0.95 0.92 1266\n DURATION 0.81 0.85 0.83 181\n PREPOSTEXP 0.97 0.97 0.97 159\n QUANTIFIER 0.62 0.59 0.60 99\n SECTIONTIME 0.94 0.98 0.96 279\n SET 0.94 0.90 0.92 139\n TIME 0.24 0.27 0.25 45\n\n micro avg 0.88 0.91 0.90 2168\n macro avg 0.78 0.79 0.78 2168\nweighted avg 0.88 0.91 0.90 2168\n'}
652
+ event = {'acc': 0.9724063406059038, 'token_f1': [0.8119243819680078, 0.8850328286211979, 0.7399507793273175, 0.8942812544345111, 0.6415094339622641, 0.8223350253807107, 0.714859437751004, 0.9919611806048688], 'f1': 0.8724382122590628, 'report': '\n precision recall f1-score support\n\n AFTER 0.80 0.82 0.81 2037\n BEFORE 0.90 0.87 0.88 7586\nBEFORE/OVERLAP 0.73 0.75 0.74 1205\n OVERLAP 0.89 0.89 0.89 10556\n\n micro avg 0.87 0.87 0.87 21384\n macro avg 0.83 0.83 0.83 21384\n weighted avg 0.88 0.87 0.87 21384\n'}
653
+ tlinkx = {'f1': [0.36606546426185704, 0.6666666666666666, 0.7110640230059029, 0.2185792349726776, 0.5308056872037915, 0.7366758784050533, 0.999791314135728, 0.284077892325315], 'acc': 0.9995700026266094, 'recall': [0.2975027144408252, 0.5933333333333334, 0.7157221206581352, 0.17094017094017094, 0.448, 0.7579203899268887, 0.9998382069108643, 0.20344544708777687], 'precision': [0.4756944444444444, 0.7606837606837606, 0.7064661654135338, 0.30303030303030304, 0.6511627906976745, 0.716589861751152, 0.9997444257589617, 0.47058823529411764], 'report_dict': {'BEFORE': {'precision': 0.4756944444444444, 'recall': 0.2975027144408252, 'f1-score': 0.36606546426185704, 'support': 921.0}, 'BEGINS-ON': {'precision': 0.7606837606837606, 'recall': 0.5933333333333334, 'f1-score': 0.6666666666666666, 'support': 300.0}, 'CONTAINS': {'precision': 0.7064661654135338, 'recall': 0.7157221206581352, 'f1-score': 0.7110640230059029, 'support': 3282.0}, 'CONTAINS-SUBEVENT': {'precision': 0.30303030303030304, 'recall': 0.17094017094017094, 'f1-score': 0.2185792349726776, 'support': 234.0}, 'ENDS-ON': {'precision': 0.6511627906976745, 'recall': 0.448, 'f1-score': 0.5308056872037915, 'support': 125.0}, 'NOTED-ON': {'precision': 0.716589861751152, 'recall': 0.7579203899268887, 'f1-score': 0.7366758784050533, 'support': 1231.0}, 'None': {'precision': 0.9997444257589617, 'recall': 0.9998382069108643, 'f1-score': 0.999791314135728, 'support': 12046250.0}, 'OVERLAP': {'precision': 0.47058823529411764, 'recall': 0.20344544708777687, 'f1-score': 0.284077892325315, 'support': 1219.0}, 'accuracy': 0.9995700026266094, 'macro avg': {'precision': 0.6354949983842435, 'recall': 0.5233377979122493, 'f1-score': 0.564215770122124, 'support': 12053562.0}, 'weighted avg': {'precision': 0.9995190055921814, 'recall': 0.9995700026266094, 'f1-score': 0.9995367023899284, 'support': 12053562.0}}, 'report_str': ' precision recall f1-score support\n\n BEFORE 0.48 0.30 0.37 921\n BEGINS-ON 0.76 0.59 0.67 300\n CONTAINS 0.71 0.72 0.71 3282\nCONTAINS-SUBEVENT 0.30 0.17 0.22 234\n ENDS-ON 0.65 0.45 0.53 125\n NOTED-ON 0.72 0.76 0.74 1231\n None 1.00 1.00 1.00 12046250\n OVERLAP 0.47 0.20 0.28 1219\n\n accuracy 1.00 12053562\n macro avg 0.64 0.52 0.56 12053562\n weighted avg 1.00 1.00 1.00 12053562\n'}
654
+
655
+
656
+ Current state (In Compute Metrics Function)
657
+
658
+ best_score : 0.7774281669442081
659
+ curr_epoch : 9.912536443148689
660
+ max_epochs : 10
661
+ curr_step : 850
662
+ max_steps : 850
663
+ best_step : 850
664
+ best_epoch : 9.912536443148689
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8996923912e6b2d18606a5bc26e228f8ba3320caf7b8802caa2eeeccb9df5527
3
+ size 538581928
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<e>",
4
+ "</e>",
5
+ "<a1>",
6
+ "</a1>",
7
+ "<a2>",
8
+ "</a2>",
9
+ "<cr>",
10
+ "<neg>"
11
+ ],
12
+ "cls_token": "[CLS]",
13
+ "mask_token": "[MASK]",
14
+ "pad_token": "[PAD]",
15
+ "sep_token": "[SEP]",
16
+ "unk_token": "[UNK]"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "28895": {
45
+ "content": "<e>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "28896": {
53
+ "content": "</e>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "28897": {
61
+ "content": "<a1>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "28898": {
69
+ "content": "</a1>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "28899": {
77
+ "content": "<a2>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "28900": {
85
+ "content": "</a2>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "28901": {
93
+ "content": "<cr>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "28902": {
101
+ "content": "<neg>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ }
108
+ },
109
+ "additional_special_tokens": [
110
+ "<e>",
111
+ "</e>",
112
+ "<a1>",
113
+ "</a1>",
114
+ "<a2>",
115
+ "</a2>",
116
+ "<cr>",
117
+ "<neg>"
118
+ ],
119
+ "clean_up_tokenization_spaces": true,
120
+ "cls_token": "[CLS]",
121
+ "do_basic_tokenize": true,
122
+ "do_lower_case": true,
123
+ "mask_token": "[MASK]",
124
+ "model_max_length": 1000000000000000019884624838656,
125
+ "never_split": null,
126
+ "pad_token": "[PAD]",
127
+ "sep_token": "[SEP]",
128
+ "strip_accents": null,
129
+ "tokenize_chinese_chars": true,
130
+ "tokenizer_class": "BertTokenizer",
131
+ "truncation_side": "right",
132
+ "unk_token": "[UNK]"
133
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e229b44d2e2e9c50cd62f98f91accf3168a16a0325dfc434e8eeea32d862894b
3
+ size 5496
vocab.txt ADDED
The diff for this file is too large to render. See raw diff