File size: 1,431 Bytes
c3ac0b4 f4785f2 c3ac0b4 9c815a2 9e3a138 c3ac0b4 9e3a138 9c815a2 9e3a138 9c815a2 c3ac0b4 9c815a2 ffdcc6f c3ac0b4 ffdcc6f 9c815a2 c3ac0b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
"""
Miscovery model package
"""
# Import configuration and model classes
from configuration_miscovery import CustomTransformerConfig
from modeling_miscovery import CustomTransformerModel
# Import pipeline utilities
from pipeline_utils import standard_pipeline, create_language_pipeline
# Register with Auto classes
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
from transformers.models.auto.modeling_auto import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_MAPPING
)
# Register configuration
if "miscovery" not in CONFIG_MAPPING:
CONFIG_MAPPING.register("miscovery", CustomTransformerConfig)
# Register model classes
MODEL_MAPPING.register(CustomTransformerConfig, CustomTransformerModel)
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.register(CustomTransformerConfig, CustomTransformerModel)
# Try to register with pipeline
try:
from transformers.pipelines import PIPELINE_REGISTRY
PIPELINE_REGISTRY.register_model(
model_type="miscovery",
task="translation",
model_class=CustomTransformerModel
)
except Exception as e:
print(f"Warning: Could not register with pipeline registry: {e}")
print("This is not critical; the model should still work with standard_pipeline")
# Export all relevant classes and functions
__all__ = [
"CustomTransformerConfig",
"CustomTransformerModel",
"standard_pipeline",
"create_language_pipeline"
] |