diff --git "a/modeling_phi4_multimodal.py" "b/modeling_phi4_multimodal.py" new file mode 100644--- /dev/null +++ "b/modeling_phi4_multimodal.py" @@ -0,0 +1,2388 @@ +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_phi4_multimodal.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import warnings +from functools import wraps +from typing import Callable, List, Optional, Tuple, Union, Any + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn.init import _calculate_fan_in_and_fan_out + +from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache +from transformers.generation import GenerationMixin +from transformers.modeling_attn_mask_utils import AttentionMaskConverter +from transformers.modeling_flash_attention_utils import FlashAttentionKwargs +from transformers.modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPast, + BaseModelOutputWithPooling, + CausalLMOutputWithPast, +) +from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS +from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel +from transformers.processing_utils import Unpack +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, + torch_int, +) +from .configuration_phi4_multimodal import Phi4MultimodalAudioConfig, Phi4MultimodalConfig, Phi4MultimodalVisionConfig + + +logger = logging.get_logger(__name__) + + +def set_attribute_for_modules(module: "torch.nn.Module", key: str, value: Any): + """ + Set a value to a module and all submodules. + """ + setattr(module, key, value) + for submodule in module.children(): + set_attribute_for_modules(submodule, key, value) + + +def del_attribute_from_modules(module: "torch.nn.Module", key: str): + """ + Delete a value from a module and all submodules. + """ + # because we might remove it previously in case it's a shared module, e.g. activation function + if hasattr(module, key): + delattr(module, key) + + for submodule in module.children(): + del_attribute_from_modules(submodule, key) + + +def can_return_tuple(func): + """ + Decorator to wrap model method, to call output.to_tuple() if return_dict=False passed as a kwarg or + use_return_dict=False is set in the config. + + Note: + output.to_tuple() convert output to tuple skipping all `None` values. + """ + + @wraps(func) + def wrapper(self, *args, **kwargs): + is_requested_to_return_tuple = kwargs.pop("return_dict", True) is False + is_configured_to_return_tuple = self.config.use_return_dict is False if hasattr(self, "config") else False + + # The following allows to convert output to tuple ONLY on top level forward call, + # while internal modules of the model will return Output objects + # to be able to use name-based attribute access in modeling code. + + # We will check if we are on top level module, if so, turn off to tuple conversion for all + # underling calls. + is_top_level_module = getattr(self, "_is_top_level_module", True) + if is_configured_to_return_tuple and is_top_level_module: + set_attribute_for_modules(self, "_is_top_level_module", False) + + try: + output = func(self, *args, **kwargs) + if is_requested_to_return_tuple or (is_configured_to_return_tuple and is_top_level_module): + output = output.to_tuple() + finally: + # Remove the flag after the model forward call is finished. + if is_configured_to_return_tuple and is_top_level_module: + del_attribute_from_modules(self, "_is_top_level_module") + + return output + + return wrapper + + +def dynamic_rope_update(rope_forward): + """ + Decorator function to update the RoPE parameters in the forward pass, if the model is using a dynamic RoPE + (i.e. a RoPE implementation that may recompute its frequencies in the forward pass). + + Args: + rope_forward (Callable): + The forward pass of the RoPE implementation. + + Returns: + The decorated forward pass. + """ + + def longrope_frequency_update(self, position_ids, device): + """Longrope uses long factor if sequence is larger than original pretraining length, short otherwise.""" + seq_len = torch.max(position_ids) + 1 + if hasattr(self.config, "original_max_position_embeddings"): + original_max_position_embeddings = self.config.original_max_position_embeddings + else: + original_max_position_embeddings = self.config.max_position_embeddings + if seq_len > original_max_position_embeddings: + if not hasattr(self, "long_inv_freq"): + self.long_inv_freq, _ = self.rope_init_fn( + self.config, device, seq_len=original_max_position_embeddings + 1 + ) + self.register_buffer("inv_freq", self.long_inv_freq, persistent=False) + else: + # This .to() is needed if the model has been moved to a device after being initialized (because + # the buffer is automatically moved, but not the original copy) + self.original_inv_freq = self.original_inv_freq.to(device) + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + + def dynamic_frequency_update(self, position_ids, device): + """ + dynamic RoPE layers should recompute `inv_freq` in the following situations: + 1 - growing beyond the cached sequence length (allow scaling) + 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) + """ + seq_len = torch.max(position_ids) + 1 + if seq_len > self.max_seq_len_cached: # growth + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) + self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation + self.max_seq_len_cached = seq_len + + if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset + # This .to() is needed if the model has been moved to a device after being initialized (because + # the buffer is automatically moved, but not the original copy) + self.original_inv_freq = self.original_inv_freq.to(device) + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + self.max_seq_len_cached = self.original_max_seq_len + + @wraps(rope_forward) + def wrapper(self, x, position_ids): + if "dynamic" in self.rope_type: + dynamic_frequency_update(self, position_ids, device=x.device) + elif self.rope_type == "longrope": + longrope_frequency_update(self, position_ids, device=x.device) + return rope_forward(self, x, position_ids) + + return wrapper + + +class Phi4MultimodalVisionMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +def simple_eager_attention_forward( + module: nn.Module, + query_states: torch.Tensor, + key_states: torch.Tensor, + value_states: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +class Phi4MultimodalVisionAttention(nn.Module): + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + self.scaling = self.head_dim**-0.5 + self.is_causal = True + self.attention_dropout = config.attention_dropout + + self.k_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.q_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """Input shape: Batch x Time x Channel""" + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + attention_interface: Callable = simple_eager_attention_forward + if self.config._attn_implementation != "eager": + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1) + attn_output = self.out_proj(attn_output) + return attn_output, attn_weights + + +class Phi4MultimodalVisionEncoderLayer(nn.Module): + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.self_attn = Phi4MultimodalVisionAttention(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = Phi4MultimodalVisionMLP(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): + Input to the layer of shape `(batch, seq_len, embed_dim)`. + attention_mask (`torch.FloatTensor`): + Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class Phi4MultimodalVisionEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`Phi4MultimodalVisionEncoderLayer`]. + + Args: + config: Phi4MultimodalVisionConfig + """ + + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList( + [Phi4MultimodalVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)] + ) + self.gradient_checkpointing = False + + # Ignore copy + @can_return_tuple + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + ) -> BaseModelOutput: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for encoder_layer in self.layers: + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_states, + attentions=all_attentions, + ) + + +def _trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + + +def trunc_normal_tf_( + tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 +) -> torch.Tensor: + """Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \\leq \text{mean} \\leq b`. + + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsequently scaled and shifted by the mean and std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + """ + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") + + +def default_flax_embed_init(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="normal") + + +class Phi4MultimodalVisionPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Phi4MultimodalVisionConfig + base_model_prefix = "phi4_vision" + supports_gradient_checkpointing = True + + _no_split_modules = ["Phi4MultimodalVisionEncoderLayer"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_flex_attn = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, Phi4MultimodalVisionEmbeddings): + width = ( + self.config.hidden_size + if isinstance(self.config, Phi4MultimodalVisionConfig) + else self.config.hidden_size + ) + nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) + elif isinstance(module, nn.Embedding): + default_flax_embed_init(module.weight) + elif isinstance(module, Phi4MultimodalVisionAttention): + nn.init.normal_(module.q_proj.weight) + nn.init.normal_(module.k_proj.weight) + nn.init.normal_(module.v_proj.weight) + nn.init.normal_(module.out_proj.weight) + nn.init.zeros_(module.q_proj.bias) + nn.init.zeros_(module.k_proj.bias) + nn.init.zeros_(module.v_proj.bias) + nn.init.zeros_(module.out_proj.bias) + elif isinstance(module, Phi4MultimodalVisionMLP): + nn.init.normal_(module.fc1.weight) + nn.init.normal_(module.fc2.weight) + nn.init.normal_(module.fc1.bias, std=1e-6) + nn.init.normal_(module.fc2.bias, std=1e-6) + elif isinstance(module, Phi4MultimodalVisionMultiheadAttentionPoolingHead): + nn.init.normal_(module.probe.data) + nn.init.normal_(module.attention.in_proj_weight.data) + nn.init.zeros_(module.attention.in_proj_bias.data) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +class Phi4MultimodalVisionEmbeddings(nn.Module): + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__() + self.config = config + self.patch_size = config.patch_size + self.num_patches_per_side = config.image_size // self.patch_size + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=config.hidden_size, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + ) + self.position_embedding = nn.Embedding(self.num_patches_per_side**2, config.hidden_size) + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution + images. This method is also adapted to support torch.jit tracing and no class embeddings. + + Adapted from: + - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and + - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 + """ + + num_patches = embeddings.shape[1] + num_positions = self.position_embedding.weight.shape[0] + + # always interpolate when tracing to ensure the exported model works for dynamic input shapes + if not torch.jit.is_tracing() and num_patches == num_positions and height == width: + return self.position_embedding(self.position_ids) + + patch_pos_embed = self.position_embedding.weight.unsqueeze(0) + + dim = embeddings.shape[-1] + + new_height = height // self.patch_size + new_width = width // self.patch_size + + sqrt_num_positions = torch_int(num_positions**0.5) + patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + size=(new_height, new_width), + mode="bicubic", + align_corners=False, + ) + + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return patch_pos_embed + + def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: + batch_size = pixel_values.size(0) + + patch_embeds = self.patch_embedding(pixel_values) + embeddings = patch_embeds.flatten(2).transpose(1, 2) + + max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3) + max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size + boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) + position_ids = torch.full((batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0) + + for batch_idx, p_attn_mask in enumerate(patch_attention_mask): + nb_patches_h = p_attn_mask[:, 0].sum() + nb_patches_w = p_attn_mask[0].sum() + + fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) + fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) + + bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) + bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) + + pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() + position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids + + position_ids = position_ids.to(self.position_embedding.weight.device) + + embeddings = embeddings + self.position_embedding(position_ids) + return embeddings + + +class Phi4MultimodalVisionMultiheadAttentionPoolingHead(nn.Module): + """Multihead Attention Pooling.""" + + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__() + + self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.mlp = Phi4MultimodalVisionMLP(config) + + def forward(self, hidden_state, attention_mask): + batch_size = hidden_state.shape[0] + probe = self.probe.repeat(batch_size, 1, 1) + + hidden_state = self.attention( + query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask + )[0] + + residual = hidden_state + hidden_state = self.layernorm(hidden_state) + hidden_state = residual + self.mlp(hidden_state) + + return hidden_state[:, 0] + + +class Phi4MultimodalVisionModel(Phi4MultimodalVisionPreTrainedModel): + config_class = Phi4MultimodalVisionConfig + main_input_name = "pixel_values" + + def __init__(self, config: Phi4MultimodalVisionConfig): + super().__init__(config) + self.config = config + + self.embeddings = Phi4MultimodalVisionEmbeddings(config) + self.encoder = Phi4MultimodalVisionEncoder(config) + self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.head = Phi4MultimodalVisionMultiheadAttentionPoolingHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.embeddings.patch_embedding + + def forward( + self, + pixel_values, + patch_attention_mask: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + ) -> BaseModelOutputWithPooling: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + batch_size = pixel_values.size(0) + if patch_attention_mask is None: + patch_attention_mask = torch.ones( + size=( + batch_size, + pixel_values.size(2) // self.config.patch_size, + pixel_values.size(3) // self.config.patch_size, + ), + dtype=torch.bool, + device=pixel_values.device, + ) + + hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) + + patch_attention_mask = patch_attention_mask.view(batch_size, -1) + # The call to `_upad_input` in `_flash_attention_forward` is expensive + # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), + # avoiding passing the attention_mask, which is equivalent to attending to the full sequence + if not torch.any(~patch_attention_mask): + attention_mask = None + else: + attention_mask = ( + _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) + if not self.config._attn_implementation == "flash_attention_2" + else patch_attention_mask + ) + + encoder_outputs: BaseModelOutput = self.encoder( + inputs_embeds=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + + last_hidden_state = encoder_outputs.last_hidden_state + last_hidden_state = self.post_layernorm(last_hidden_state) + + pooled_output = self.head( + hidden_state=last_hidden_state, + attention_mask=patch_attention_mask, + ) + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class Phi4MultimodalImageEmbedding(nn.Module): + """Image embedding.""" + + def __init__(self, config: Phi4MultimodalConfig): + super().__init__() + self.config = config + self.layer_idx = config.vision_config.feature_layer + self.crop_size = config.vision_config.crop_size + self.image_dim_out = config.vision_config.hidden_size + + n_patches = config.vision_config.image_size // config.vision_config.patch_size + if n_patches % 2 != 0: + self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1)) + n_patches += 1 + self.num_img_tokens = (n_patches // 2) ** 2 + + self.drop = nn.Dropout(config.embd_pdrop) + self.img_processor = Phi4MultimodalVisionModel._from_config(config.vision_config) + self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2) + self.img_projection_up = nn.Linear(self.image_dim_out, config.hidden_size) + self.img_projection_down = nn.Linear(config.hidden_size, config.hidden_size) + self.global_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, self.image_dim_out])) + self.sub_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out])) + + def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor: + img_processor_output = self.img_processor( + img_embeds, patch_attention_mask=attention_mask, output_hidden_states=True + ) + img_feature = img_processor_output.hidden_states[self.layer_idx] + + patch_feature = img_feature + # reshape to 2D tensor + width = int(math.sqrt(patch_feature.size(1))) + patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) + # convert to NCHW + patch_feature = patch_feature.permute(0, 3, 1, 2) + if getattr(self, "img_processor_padding", None) is not None: + patch_feature = self.img_processor_padding(patch_feature) + patch_feature = self.image_token_compression(patch_feature) + # convert to NHWC + patch_feature = patch_feature.permute(0, 2, 3, 1) + patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) + return patch_feature + + def forward( + self, + input_ids: torch.LongTensor, + inputs_embeds: torch.Tensor, + image_pixel_values: torch.FloatTensor, + image_sizes: Optional[torch.Tensor] = None, + image_attention_mask: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + image_pixel_values = image_pixel_values.to(self.img_processor.embeddings.patch_embedding.weight.dtype) + + target_device = self.img_projection_up.bias.device + target_dtype = self.img_projection_up.bias.dtype + + batch_size = image_pixel_values.shape[0] + + img_features = self.get_img_features( + image_pixel_values.flatten(0, 1), + attention_mask=image_attention_mask.flatten(0, 1).to(dtype=bool, device=target_device), + ) + base_feat_size = int(np.sqrt(img_features.shape[1])) + img_features = img_features.view(batch_size, -1, base_feat_size**2, self.image_dim_out) + image_sizes = image_sizes.view(-1, 2) + + output_imgs = [] + for idx in range(batch_size): + height, width = image_sizes[idx] + height_ratio = height // self.crop_size + width_ratio = width // self.crop_size + area_ratio = height_ratio * width_ratio + + global_img = img_features[idx, :1] + global_img = global_img.reshape(1, base_feat_size, base_feat_size, self.image_dim_out).contiguous() + temporary_extensor = self.sub_img_feature_extensor.repeat(1, base_feat_size, 1, 1) + global_img = torch.cat([global_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out) + + sub_img = img_features[idx, 1:] + sub_img = sub_img[:area_ratio] + sub_img = ( + sub_img.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size, self.image_dim_out) + .transpose(1, 2) + .reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size, self.image_dim_out) + .contiguous() + ) + + if image_attention_mask is not None: + reshaped_image_attention_mask = ( + image_attention_mask[idx, 1 : area_ratio + 1, 0::2, 0::2] + .reshape(height_ratio, width_ratio, base_feat_size, base_feat_size) + .transpose(1, 2) + .reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size) + ) + useful_height = int(reshaped_image_attention_mask[0, :, 0].sum().item()) + useful_width = int(reshaped_image_attention_mask[0, 0, :].sum().item()) + sub_img = sub_img[:, :useful_height, :useful_width] + temporary_extensor = self.sub_img_feature_extensor.repeat(1, useful_height, 1, 1) + else: + temporary_extensor = self.sub_img_feature_extensor.repeat(1, height_ratio * base_feat_size, 1, 1) + + sub_img = torch.cat([sub_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out) + + # Merge global and sub + output_imgs.append(torch.cat([sub_img, self.global_img_feature_extensor, global_img], dim=1)) + + img_set_tensor = [] + for output_img in output_imgs: + output_img = output_img.to(device=target_device, dtype=target_dtype) + img_feature_proj = self.img_projection_up(output_img) + img_feature_proj = nn.functional.gelu(img_feature_proj) + img_feature_proj = self.img_projection_down(img_feature_proj) + img_set_tensor.append(img_feature_proj) + + merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0) + merged_img_set_tensor = merged_img_set_tensor.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device) + + with torch.no_grad(): + positions_tuple = torch.nonzero(input_ids == self.config.vision_config.image_token_id, as_tuple=True) + + # Temporarily disable autocast to avoid issue on bf16 tensors + # Ref: https://github.com/pytorch/pytorch/issues/132715 + with torch.autocast(device_type=inputs_embeds.device.type, enabled=False): + image_embeds = inputs_embeds.index_put( + indices=positions_tuple, values=merged_img_set_tensor, accumulate=False + ) + + image_embeds = self.drop(image_embeds) + + return image_embeds + + +########################################################## AUDIO ############################################# + + +class Phi4MultimodalAudioMLP(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.layer_norm = nn.LayerNorm(config.hidden_size) + self.act_fn = ACT2FN[config.activation] + self.gate_up_proj = nn.Linear(config.hidden_size, config.intermediate_size * 2) + self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, hidden_states): + hidden_states = self.layer_norm(hidden_states) + up_states = self.gate_up_proj(hidden_states) + up_states, gate = up_states.chunk(2, dim=-1) + up_states = up_states * self.act_fn(gate) + up_states = self.dropout(up_states) + hidden_states = self.down_proj(up_states) + out = self.dropout(hidden_states) + + return out + + +class Phi4MultimodalAudioAttention(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.config = config + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.dropout_rate + self.is_causal = True + + self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) + self.k_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) + self.v_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) + self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + **kwargs, + ): + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + attention_interface: Callable = simple_eager_attention_forward + if self.config._attn_implementation != "eager": + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, _ = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output + + +class Phi4MultimodalAudioDepthWiseSeperableConv1d(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig, padding: int = 0): + super().__init__() + self.dw_conv = nn.Conv1d( + config.hidden_size, + config.hidden_size * config.depthwise_multiplier, + config.kernel_size, + 1, + padding=padding, + groups=config.hidden_size, + ) + self.pw_conv = nn.Conv1d( + config.hidden_size * config.depthwise_multiplier, config.depthwise_seperable_out_channel, 1, 1, 0 + ) + + def forward(self, hidden_states): + return self.pw_conv(self.dw_conv(hidden_states)) + + +class Phi4MultimodalAudioGluPointWiseConv(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.config = config + self.output_dim = config.ext_pw_out_channel + + self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel * 2, kernel_size=1, stride=1) + self.glu_act = ACT2FN[config.conv_glu_type] + self.b1 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1)) + self.b2 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1)) + + def forward(self, hidden_states): + # we assume the input always has the #channel (#dim) in the last dimension of the + # tensor, so need to switch the dimension first for 1D-Conv case + hidden_states = hidden_states.permute([0, 2, 1]) + hidden_states = self.ext_pw_conv_1d(hidden_states) + out = hidden_states[:, 0 : self.output_dim, :] + self.b1 + out = out * self.glu_act(hidden_states[:, self.output_dim : self.output_dim * 2, :] + self.b2) + return out.permute([0, 2, 1]) + + +class Phi4MultimodalAudioConvModule(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.config = config + self.kernel_size = config.kernel_size + + self.layer_norm = nn.LayerNorm(config.hidden_size) + self.glu = Phi4MultimodalAudioGluPointWiseConv(config) + self.dw_sep_conv_1d = Phi4MultimodalAudioDepthWiseSeperableConv1d(config, padding=config.kernel_size - 1) + self.act = ACT2FN[config.conv_activation] + self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel, kernel_size=1, stride=1) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.glu(self.layer_norm(hidden_states)) + hidden_states = self.dw_sep_conv_1d(hidden_states.permute([0, 2, 1])) + + if self.kernel_size > 1: + hidden_states = hidden_states[:, :, : -(self.kernel_size - 1)] + + hidden_states = self.act(hidden_states) + hidden_states = self.ext_pw_conv_1d(hidden_states) + out = self.dropout(hidden_states.permute([0, 2, 1])) + return out + + +class Phi4MultimodalAudioConformerEncoderLayer(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + + self.feed_forward_in = Phi4MultimodalAudioMLP(config) + self.self_attn = Phi4MultimodalAudioAttention(config) + self.conv = Phi4MultimodalAudioConvModule(config) + self.feed_forward_out = Phi4MultimodalAudioMLP(config) + self.layer_norm_att = nn.LayerNorm(config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + ): + residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states) + hidden_states = self.layer_norm_att(residual) + + hidden_states = residual + self.self_attn(hidden_states, attention_mask) + hidden_states = hidden_states + self.conv(hidden_states) + hidden_states = hidden_states + 0.5 * self.feed_forward_out(hidden_states) + + out = self.layer_norm(hidden_states) + + return out + + +class Phi4MultimodalAudioNemoConvSubsampling(torch.nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.subsampling_factor = config.time_reduction + self.sampling_num = int(math.log(self.subsampling_factor, 2)) + self.act_fn = ACT2FN[config.nemo_activation] + conv_channels = config.nemo_conv_channels + + layers = [ + nn.Conv2d(1, conv_channels, kernel_size=3, stride=2, padding=1), + self.act_fn, + ] + for _ in range(self.sampling_num - 1): + layers.extend( + [ + nn.Conv2d(conv_channels, conv_channels, kernel_size=3, stride=2, padding=1, groups=conv_channels), + nn.Conv2d(conv_channels, conv_channels, kernel_size=1, stride=1, padding=0, groups=1), + self.act_fn, + ] + ) + + # Aggregate the layers + self.conv = torch.nn.Sequential(*layers) + self.out = torch.nn.Linear(conv_channels * config.nemo_final_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]): + # Unsqueeze Channel Axis + hidden_states = hidden_states.unsqueeze(1) + hidden_states = self.conv(hidden_states) + + # Flatten Channel and Frequency Axes + b, _, t, _ = hidden_states.size() + hidden_states = self.out(hidden_states.transpose(1, 2).reshape(b, t, -1)) + + if mask is None: + return hidden_states, None + + max_audio_length = hidden_states.shape[1] + feature_lens = mask.sum(1) + padding_length = torch.ceil(feature_lens / self.subsampling_factor) + arange_ = torch.arange(0, max_audio_length, device=hidden_states.device) + pad_mask = arange_.expand(padding_length.size(0), -1) < padding_length.unsqueeze(1) + return hidden_states, pad_mask.unsqueeze(1) + + +class Phi4MultimodalAudioRelativeAttentionBias(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + + self.max_distance = config.bias_max_distance + self.symmetric = config.bias_symmetric + self.num_buckets = self.max_distance + if not config.bias_symmetric: + self.num_buckets *= 2 + self.bias_values = nn.Embedding(self.num_buckets, config.num_attention_heads) + + def forward(self, x): + # instantiate bias compatible with shape of x + max_pos = x.size(1) + context_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[:, None] + memory_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[None, :] + relative_position = memory_position - context_position + # clipping to a maximum distance using ops that play well with ONNX export + relative_position = relative_position.masked_fill(relative_position < -self.max_distance, -self.max_distance) + relative_position = relative_position.masked_fill( + relative_position > self.max_distance - 1, self.max_distance - 1 + ) + + # mapping from relative position to index in the bias parameter + bias_idx = relative_position + bias_idx = bias_idx.abs() if self.symmetric else bias_idx + self.num_buckets // 2 + + att_bias = self.bias_values(bias_idx) + att_bias = att_bias.permute(2, 0, 1).unsqueeze(0) + + return att_bias + + +class Phi4MultimodalAudioMeanVarianceNormLayer(nn.Module): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__() + self.register_buffer("global_mean", torch.zeros(config.input_size)) + self.register_buffer("global_invstd", torch.ones(config.input_size)) + + def forward(self, x): + return (x - self.global_mean) * self.global_invstd + + +class Phi4MultimodalAudioPreTrainedModel(PreTrainedModel): + config_class = Phi4MultimodalAudioConfig + supports_gradient_checkpointing = True + _no_split_modules = ["Phi4MultimodalAudioConformerEncoderLayer"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_flex_attn = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, Phi4MultimodalAudioGluPointWiseConv): + module.b1.data.zero_() + module.b2.data.zero_() + + +def unfold_tensor(tensor, max_seq_len): + """ + For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len, + this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len. + Args: + tensor: N, T, D + """ + _, _, D = tensor.shape + tensor = tensor.transpose(-1, -2) + # N x D x 1 x T => N x (D x max_seq_len) x T' + tensor = F.unfold(tensor[..., None, :], kernel_size=(1, max_seq_len), stride=(1, max_seq_len)) + + new_bsz, _, slen = tensor.shape + tensor = tensor.view(new_bsz, -1, max_seq_len, slen) + tensor = tensor.permute(0, 3, 2, 1) + tensor = tensor.view(-1, max_seq_len, D).contiguous() + return tensor + + +def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0): + """ + The function is very important for Transformer Transducer Streaming mode + Args: + xs_len (int): sequence length + chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45] + left_window (int): how many left chunks can be seen + right_window (int): how many right chunks can be seen. It is used for chunk overlap model. + Returns: + mask (torch.Tensor): a mask tensor for streaming model + """ + chunk_start_idx = torch.Tensor(chunk_start_idx).long() + start_pad = torch.nn.functional.pad( + chunk_start_idx, (1, 0) + ) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48] + end_pad = torch.nn.functional.pad( + chunk_start_idx, (0, 1), value=x_len + ) # append x_len to the end, so it becomes [0,18,36,48, x_len] + seq_range = torch.arange(0, x_len).unsqueeze(-1) + idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1] + seq_range_expand = torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1) + idx_left = idx - left_window + idx_left[idx_left < 0] = 0 + boundary_left = start_pad[idx_left] + mask_left = seq_range_expand >= boundary_left.unsqueeze(-1) + idx_right = idx + right_window + idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx) + boundary_right = end_pad[idx_right] + mask_right = seq_range_expand < boundary_right.unsqueeze(-1) + return mask_left & mask_right + + +class Phi4MultimodalAudioModel(Phi4MultimodalAudioPreTrainedModel): + def __init__(self, config: Phi4MultimodalAudioConfig): + super().__init__(config) + self.config = config + + self.encoder_embedding = Phi4MultimodalAudioMeanVarianceNormLayer(config) + self.embed = Phi4MultimodalAudioNemoConvSubsampling(config) + self.relative_attention_bias_layer = Phi4MultimodalAudioRelativeAttentionBias(config) + self.encoders = nn.ModuleList( + [Phi4MultimodalAudioConformerEncoderLayer(config) for _ in range(config.num_blocks)] + ) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk): + # Create mask matrix for streaming + # S stores start index. if chunksize is 18, s is [0,18,36,....] + chunk_start_idx = np.arange(0, seq_len, chunk_size) + # avoid randomness when run evaluation or decoding + if self.training and np.random.rand() > 0.5: + # Either first or last chunk is not complete. + # If only the last one is not complete, EOS is not effective + chunk_start_idx = seq_len - chunk_start_idx + chunk_start_idx = chunk_start_idx[::-1] + chunk_start_idx = chunk_start_idx[:-1] + chunk_start_idx = np.insert(chunk_start_idx, 0, 0) + + enc_streaming_mask = ( + adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk) + .unsqueeze(0) + .expand([batch_size, -1, -1]) + ) + return enc_streaming_mask + + def forward_embeddings(self, hidden_states, masks): + """Forwarding the inputs through the top embedding layers""" + seq_len = math.ceil(hidden_states.shape[1] / self.config.time_reduction) + if seq_len <= 0: + raise ValueError( + f"The squence length after time reduction is invalid: {seq_len}. Your input feature is too short." + ) + + batch_size = hidden_states.shape[0] + + enc_streaming_mask = self._streaming_mask(seq_len, batch_size, self.config.chunk_size, self.config.left_chunk) + enc_streaming_mask = enc_streaming_mask.to(hidden_states.device) + + hidden_states, masks = self.embed(hidden_states, masks) + + streaming_mask = enc_streaming_mask + if streaming_mask is not None and masks is not None: + hs_mask = masks & streaming_mask + elif masks is not None: + hs_mask = masks + else: + hs_mask = streaming_mask + + return hidden_states, hs_mask, masks + + def calculate_hs_mask(self, hidden_states, device, mask): + max_audio_length = hidden_states.shape[1] + batch_size = hidden_states.shape[0] + enc_streaming_mask = self._streaming_mask( + max_audio_length, batch_size, self.config.chunk_size, self.config.left_chunk + ) + enc_streaming_mask = enc_streaming_mask.to(device) + if mask is None: + return enc_streaming_mask + + feature_lens = mask.sum(1) + padding_length = feature_lens + pad_mask = torch.arange(0, max_audio_length, device=device).expand( + padding_length.size(0), -1 + ) < padding_length.unsqueeze(1) + pad_mask = pad_mask.unsqueeze(1) + pad_mask = pad_mask & enc_streaming_mask + return pad_mask + + def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]): + hidden_states = self.encoder_embedding(hidden_states) + hidden_states, hs_mask, mask = self.forward_embeddings(hidden_states, mask) + + unfolded = False + bs, seq_len, _ = hidden_states.shape + max_seq_len = 500 # maxium position for absolute positional encoding + if seq_len > max_seq_len: + # audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len + unfolded = True + # the unfold op will drop residual frames, pad it to the multiple of max_seq_len + if seq_len % max_seq_len > 0: + chunk_pad_size = max_seq_len - (seq_len % max_seq_len) + else: + chunk_pad_size = 0 + if chunk_pad_size > 0: + hidden_states_pad = F.pad(hidden_states, (0, 0, 0, chunk_pad_size), "constant", 0) + hidden_states = hidden_states_pad.to(hidden_states.device) + + hidden_states = unfold_tensor(hidden_states, max_seq_len) + masks_unfold = None + if mask is not None: + # revise hs_mask here because the previous calculated hs_mask did not consider extra pad + subsampled_pad_mask = mask.squeeze(1) # [bz, subsampled_unmask_seq_len] + extra_padded_subsamlped_pad_mask = F.pad( + subsampled_pad_mask, (0, chunk_pad_size), "constant", False + ) # extra padding to the pad mask + extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float() + masks_unfold = unfold_tensor( + extra_padded_subsamlped_pad_mask, max_seq_len + ) # unfold the pad mask like we did to the input tensor + masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor + hs_mask = self.calculate_hs_mask( + hidden_states, hidden_states.device, masks_unfold + ) # calculate hs_mask based on the unfolded pad mask + + relative_attention_bias = self.relative_attention_bias_layer(hidden_states) + attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias + + for layer in self.encoders: + if self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + layer.__call__, + hidden_states, + attention_mask, + ) + else: + hidden_states = layer(hidden_states, attention_mask) + + if unfolded: + embed_dim = hidden_states.shape[-1] + hidden_states = hidden_states.reshape(bs, -1, embed_dim) + # if we ever padded before unfolding, we need to remove the padding + if chunk_pad_size > 0: + hidden_states = hidden_states[:, :-chunk_pad_size, :] + + return hidden_states + + +class Phi4MultimodalAudioEmbedding(nn.Module): + def __init__(self, config: Phi4MultimodalConfig): + super().__init__() + self.config = config + self.layer_idx = config.audio_config.feature_layer + + self.drop = nn.Dropout(config.embd_pdrop) + self.encoder = Phi4MultimodalAudioModel._from_config(config.audio_config) + self.up_proj_for_speech = nn.Linear( + config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size + ) + self.down_proj_for_speech = nn.Linear(config.hidden_size, config.hidden_size) + self.up_proj_for_vision_speech = nn.Linear( + config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size + ) + self.down_proj_for_vision_speech = nn.Linear(config.hidden_size, config.hidden_size) + + def forward( + self, + input_ids: torch.LongTensor, + inputs_embeds: torch.Tensor, + audio_input_features: torch.FloatTensor, + audio_embed_sizes=None, + audio_attention_mask=None, + audio_projection_mode="speech", + ) -> torch.FloatTensor: + with torch.no_grad(): + positions_tuple = torch.nonzero(input_ids == self.config.audio_config.audio_token_id, as_tuple=True) + + up_proj = self.up_proj_for_speech if audio_projection_mode == "speech" else self.up_proj_for_vision_speech + down_proj = ( + self.down_proj_for_speech if audio_projection_mode == "speech" else self.down_proj_for_vision_speech + ) + + target_device = up_proj.bias.device + target_dtype = up_proj.bias.dtype + + audio_input_features = audio_input_features.to(device=target_device, dtype=target_dtype) + + audio_encoder_hidden_states = self.encoder(audio_input_features, audio_attention_mask) + audio_encoder_hidden_states = up_proj(audio_encoder_hidden_states) + audio_encoder_hidden_states = nn.functional.gelu(audio_encoder_hidden_states) + audio_embeds = down_proj(audio_encoder_hidden_states) + + merged_audio_embeds = torch.cat( + [audio_embeds[i, : audio_embed_sizes[i], :] for i in range(len(audio_embed_sizes))], dim=0 + ) + merged_audio_embeds = merged_audio_embeds.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device) + # Temporarily disable autocast to avoid issue on bf16 tensors + # Ref: https://github.com/pytorch/pytorch/issues/132715 + with torch.autocast(device_type=inputs_embeds.device.type, enabled=False): + audio_embeds = inputs_embeds.index_put( + indices=positions_tuple, values=merged_audio_embeds, accumulate=False + ) + + audio_embeds = self.drop(audio_embeds) + + return audio_embeds + + +class Phi4MultimodalRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Phi4MultimodalRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class Phi4MultimodalMLP(nn.Module): + def __init__(self, config): + super().__init__() + + self.config = config + self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) + self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) + self.activation_fn = ACT2FN[config.hidden_act] + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + up_states = self.gate_up_proj(hidden_states) + + gate, up_states = up_states.chunk(2, dim=-1) + up_states = up_states * self.activation_fn(gate) + + return self.down_proj(up_states) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + + attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + + rotary_dim = cos.shape[-1] + q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] + k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] + + q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1) + k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1) + return q_embed, k_embed + + +class Phi4MultimodalAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: Phi4MultimodalConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.num_key_value_heads = config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.is_causal = True + + op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim) + self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) + self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs: Unpack[FlashAttentionKwargs], + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + qkv = self.qkv_proj(hidden_states) + query_pos = self.config.num_attention_heads * self.head_dim + query_states = qkv[..., :query_pos] + key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] + value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] + + query_states = query_states.view(hidden_shape).transpose(1, 2) + key_states = key_states.view(hidden_shape).transpose(1, 2) + value_states = value_states.view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): + logger.warning_once( + "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " + 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + else: + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + sliding_window=getattr(self.config, "sliding_window", None), + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + +class Phi4MultimodalDecoderLayer(nn.Module): + def __init__(self, config: Phi4MultimodalConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = Phi4MultimodalAttention(config=config, layer_idx=layer_idx) + self.mlp = Phi4MultimodalMLP(config) + self.input_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.config = config + self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) + self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs: Unpack[FlashAttentionKwargs], + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): + input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range + `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) + past_key_value (`Cache`, *optional*): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama + + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama + + outputs = (hidden_states,) + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +class Phi4MultimodalFeatureEmbedding(nn.Module): + """Image-audio embedding.""" + + def __init__(self, config: Phi4MultimodalConfig) -> None: + super().__init__() + self.config = config + self.image_token_id = config.vision_config.image_token_id + self.audio_token_id = config.audio_config.audio_token_id + self.image_embed = Phi4MultimodalImageEmbedding(config) + self.audio_embed = Phi4MultimodalAudioEmbedding(config) + + def forward( + self, + input_ids: torch.LongTensor, + inputs_embeds: torch.Tensor, + image_pixel_values: Optional[torch.FloatTensor] = None, + audio_input_features: Optional[torch.FloatTensor] = None, + image_sizes=None, + image_attention_mask=None, + audio_embed_sizes=None, + audio_attention_mask=None, + ) -> torch.FloatTensor: + with torch.no_grad(): + image_position_mask = (input_ids == self.config.vision_config.image_token_id).unsqueeze(-1) + non_image_position_mask = ~image_position_mask + + image_embeds = None + audio_embeds = None + if image_pixel_values is not None and (input_ids == self.image_token_id).any(): + image_embeds = self.image_embed( + input_ids, + inputs_embeds, + image_pixel_values=image_pixel_values, + image_sizes=image_sizes, + image_attention_mask=image_attention_mask, + ) + if audio_input_features is not None and (input_ids == self.audio_token_id).any(): + audio_projection_mode = "vision" if image_pixel_values is not None else "speech" + audio_embeds = self.audio_embed( + input_ids, + inputs_embeds, + audio_input_features=audio_input_features, + audio_embed_sizes=audio_embed_sizes, + audio_attention_mask=audio_attention_mask, + audio_projection_mode=audio_projection_mode, + ) + + # merge image and audio + if image_embeds is not None and audio_embeds is not None: + inputs_embeds = image_embeds * image_position_mask + audio_embeds * non_image_position_mask + elif image_embeds is not None: + inputs_embeds = image_embeds + elif audio_embeds is not None: + inputs_embeds = audio_embeds + + return inputs_embeds + + +class Phi4MultimodalRotaryEmbedding(nn.Module): + def __init__(self, config: Phi4MultimodalConfig, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + @torch.no_grad() + @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) + def forward(self, x, position_ids): + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) + position_ids_expanded = position_ids[:, None, :].float() + + device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): # Force float32 + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() * self.attention_scaling + sin = emb.sin() * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +PHI4_MULTIMODAL_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Phi4MultimodalConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.", + PHI4_MULTIMODAL_START_DOCSTRING, +) +class Phi4MultimodalPreTrainedModel(PreTrainedModel): + config_class = Phi4MultimodalConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Phi4MultimodalDecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_flex_attn = True + _supports_cache_class = True + _supports_quantized_cache = True + _supports_static_cache = True + _supports_attention_backend = True + _version = "0.0.5" + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, Phi4MultimodalRMSNorm): + module.weight.data.fill_(1.0) + elif isinstance(module, Phi4MultimodalImageEmbedding): + module.global_img_feature_extensor.data.zero_() + module.sub_img_feature_extensor.data.zero_() + + +PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache`)`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + See our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + image_pixel_values (`torch.FloatTensor`, *optional*): + If the input contains images, these correspond to the pixel values after transformations (as returned by + the Processor) + image_sizes (`torch.LongTensor`, *optional*): + If the input contains images, these correspond to size of each image. + image_attention_mask (`torch.LongTensor`, *optional*): + Attention mask for the images. + audio_input_features (`torch.FloatTensor`, *optional*): + If the input contains audio samples, these correspond to the values after transformation (as returned by + the Processor). + audio_embed_sizes (`torch.Tensor`, *optional*): + Size of the audio inputs. + audio_attention_mask (`torch.Tensor, *optional*): + Attention mask for the audio inputs. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.", + PHI4_MULTIMODAL_START_DOCSTRING, +) +class Phi4MultimodalModel(Phi4MultimodalPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MultimodalMMDecoderLayer`] + Args: + config: Phi4MultimodalMMConfig + """ + + def __init__(self, config: Phi4MultimodalConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + + self.layers = nn.ModuleList( + [Phi4MultimodalDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.rotary_emb = Phi4MultimodalRotaryEmbedding(config=config) + + self.gradient_checkpointing = False + self.embed_dropout = nn.Dropout(config.embd_pdrop) + + self.embed_tokens_extend = Phi4MultimodalFeatureEmbedding(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @can_return_tuple + @add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + image_pixel_values: Optional[torch.FloatTensor] = None, + image_sizes: Optional[torch.LongTensor] = None, + image_attention_mask=None, + audio_input_features: Optional[torch.FloatTensor] = None, + audio_embed_sizes=None, + audio_attention_mask=None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> BaseModelOutputWithPast: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + inputs_embeds = self.embed_tokens_extend( + input_ids, + inputs_embeds, + image_pixel_values=image_pixel_values, + audio_input_features=audio_input_features, + image_sizes=image_sizes, + image_attention_mask=image_attention_mask, + audio_embed_sizes=audio_embed_sizes, + audio_attention_mask=audio_attention_mask, + ) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + position_embeddings, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values if use_cache else None, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def _update_causal_mask( + self, + attention_mask: Union[torch.Tensor, "BlockMask"], + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool = False, + ): + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and past_key_values is not None: + is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] + if is_padding_right: + raise ValueError( + "You are attempting to perform batched generation with padding_side='right'" + " this may lead to unexpected behaviour for Flash Attention version of Phi4Multimodal. Make sure to " + " call `tokenizer.padding_side = 'left'` before tokenizing the input. " + ) + if attention_mask is not None and 0.0 in attention_mask: + return attention_mask + return None + if self.config._attn_implementation == "flex_attention": + if isinstance(attention_mask, torch.Tensor): + attention_mask = make_flex_block_causal_mask(attention_mask) + return attention_mask + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) + + # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + if ( + self.config._attn_implementation == "sdpa" + and not (using_static_cache or using_sliding_window_cache) + and not output_attentions + ): + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + sliding_window=self.config.sliding_window, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + # SlidingWindowCache or StaticCache + if using_sliding_window_cache or using_static_cache: + target_length = past_key_values.get_max_cache_shape() + # DynamicCache or no cache + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + config=self.config, + past_key_values=past_key_values, + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type in ["cuda", "xpu", "npu"] + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + @staticmethod + def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + cache_position: torch.Tensor, + batch_size: int, + config: Phi4MultimodalConfig, + past_key_values: Cache, + ): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to place the 4D attention mask on. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + config (`Phi4MultimodalConfig`): + The model's configuration class + past_key_values (`Cache`): + The cache class that is being used currently to generate + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + min_dtype = torch.finfo(dtype).min + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + if config.get_text_config().sliding_window is not None: + # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also + # the check is needed to verify is current checkpoint was trained with sliding window or not + if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: + sliding_attend_mask = torch.arange(target_length, device=device) <= ( + cache_position.reshape(-1, 1) - config.get_text_config().sliding_window + ) + diagonal_attend_mask.bitwise_or_(sliding_attend_mask) + causal_mask *= diagonal_attend_mask + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + if attention_mask.shape[-1] > target_length: + attention_mask = attention_mask[:, :target_length] + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( + causal_mask.device + ) + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + return causal_mask + + +class Phi4MultimodalForCausalLM(Phi4MultimodalPreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} + + def __init__(self, config): + super().__init__(config) + self.model = Phi4MultimodalModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @can_return_tuple + @add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=Phi4MultimodalConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + image_pixel_values: Optional[torch.FloatTensor] = None, + image_sizes: Optional[torch.LongTensor] = None, + image_attention_mask=None, + audio_input_features: Optional[torch.FloatTensor] = None, + audio_embed_sizes=None, + audio_attention_mask=None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + logits_to_keep: Union[int, torch.Tensor] = 0, + **kwargs, + ) -> CausalLMOutputWithPast: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + logits_to_keep (`int` or `torch.Tensor`, *optional*): + If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. + This is useful when using packed tensor format (single dimension for batch and sequence length). + Returns: + + Example: + ```python + >>> from transformers import AutoTokenizer, Phi4MultimodalForCausalLM + >>> model = Phi4MultimodalForCausalLM.from_pretrained("TBA") + >>> tokenizer = AutoTokenizer.from_pretrained("TBA") + >>> prompt = "This is an example script ." + >>> inputs = tokenizer(prompt, return_tensors="pt") + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs: BaseModelOutputWithPast = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + image_pixel_values=image_pixel_values, + image_sizes=image_sizes, + image_attention_mask=image_attention_mask, + audio_input_features=audio_input_features, + audio_embed_sizes=audio_embed_sizes, + audio_attention_mask=audio_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs.last_hidden_state + # Only compute necessary logits, and do not upcast them to float if we are not computing the loss + slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep + logits = self.lm_head(hidden_states[:, slice_indices, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits, labels, self.vocab_size) + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + image_pixel_values=None, + image_sizes=None, + image_attention_mask=None, + audio_input_features=None, + audio_embed_sizes=None, + audio_attention_mask=None, + cache_position=None, + position_ids=None, + use_cache=True, + logits_to_keep=0, + **kwargs, + ): + # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the + # process + + # When the first time input length reached long and short factor switching point, enforce re-compute cache + # It will cause downside of slower at this single token position, however, better than current failure. + if ( + past_key_values + and self.config.rope_scaling + and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 + ): + past_length = cache_position[0] + if past_length <= self.config.original_max_position_embeddings: + past_key_values = None + + model_inputs = super().prepare_inputs_for_generation( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + image_pixel_values=image_pixel_values, + image_sizes=image_sizes, + image_attention_mask=image_attention_mask, + audio_input_features=audio_input_features, + audio_embed_sizes=audio_embed_sizes, + audio_attention_mask=audio_attention_mask, + cache_position=cache_position, + position_ids=position_ids, + use_cache=use_cache, + logits_to_keep=logits_to_keep, + **kwargs, + ) + return model_inputs + + +__all__ = [ + "Phi4MultimodalAudioPreTrainedModel", + "Phi4MultimodalAudioModel", + "Phi4MultimodalVisionPreTrainedModel", + "Phi4MultimodalVisionModel", + "Phi4MultimodalPreTrainedModel", + "Phi4MultimodalModel", + "Phi4MultimodalForCausalLM", +] + + +Phi4MultimodalForCausalLM.register_for_auto_class("AutoModelForCausalLM") \ No newline at end of file