File size: 107,103 Bytes
698b586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi4_multimodal.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from functools import wraps
from typing import Callable, List, Optional, Tuple, Union, Any
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_phi4_multimodal import Phi4MultimodalAudioConfig, Phi4MultimodalConfig, Phi4MultimodalVisionConfig
logger = logging.get_logger(__name__)
def set_attribute_for_modules(module: "torch.nn.Module", key: str, value: Any):
"""
Set a value to a module and all submodules.
"""
setattr(module, key, value)
for submodule in module.children():
set_attribute_for_modules(submodule, key, value)
def del_attribute_from_modules(module: "torch.nn.Module", key: str):
"""
Delete a value from a module and all submodules.
"""
# because we might remove it previously in case it's a shared module, e.g. activation function
if hasattr(module, key):
delattr(module, key)
for submodule in module.children():
del_attribute_from_modules(submodule, key)
def can_return_tuple(func):
"""
Decorator to wrap model method, to call output.to_tuple() if return_dict=False passed as a kwarg or
use_return_dict=False is set in the config.
Note:
output.to_tuple() convert output to tuple skipping all `None` values.
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
is_requested_to_return_tuple = kwargs.pop("return_dict", True) is False
is_configured_to_return_tuple = self.config.use_return_dict is False if hasattr(self, "config") else False
# The following allows to convert output to tuple ONLY on top level forward call,
# while internal modules of the model will return Output objects
# to be able to use name-based attribute access in modeling code.
# We will check if we are on top level module, if so, turn off to tuple conversion for all
# underling calls.
is_top_level_module = getattr(self, "_is_top_level_module", True)
if is_configured_to_return_tuple and is_top_level_module:
set_attribute_for_modules(self, "_is_top_level_module", False)
try:
output = func(self, *args, **kwargs)
if is_requested_to_return_tuple or (is_configured_to_return_tuple and is_top_level_module):
output = output.to_tuple()
finally:
# Remove the flag after the model forward call is finished.
if is_configured_to_return_tuple and is_top_level_module:
del_attribute_from_modules(self, "_is_top_level_module")
return output
return wrapper
def dynamic_rope_update(rope_forward):
"""
Decorator function to update the RoPE parameters in the forward pass, if the model is using a dynamic RoPE
(i.e. a RoPE implementation that may recompute its frequencies in the forward pass).
Args:
rope_forward (Callable):
The forward pass of the RoPE implementation.
Returns:
The decorated forward pass.
"""
def longrope_frequency_update(self, position_ids, device):
"""Longrope uses long factor if sequence is larger than original pretraining length, short otherwise."""
seq_len = torch.max(position_ids) + 1
if hasattr(self.config, "original_max_position_embeddings"):
original_max_position_embeddings = self.config.original_max_position_embeddings
else:
original_max_position_embeddings = self.config.max_position_embeddings
if seq_len > original_max_position_embeddings:
if not hasattr(self, "long_inv_freq"):
self.long_inv_freq, _ = self.rope_init_fn(
self.config, device, seq_len=original_max_position_embeddings + 1
)
self.register_buffer("inv_freq", self.long_inv_freq, persistent=False)
else:
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
def dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@wraps(rope_forward)
def wrapper(self, x, position_ids):
if "dynamic" in self.rope_type:
dynamic_frequency_update(self, position_ids, device=x.device)
elif self.rope_type == "longrope":
longrope_frequency_update(self, position_ids, device=x.device)
return rope_forward(self, x, position_ids)
return wrapper
class Phi4MultimodalVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def simple_eager_attention_forward(
module: nn.Module,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Phi4MultimodalVisionAttention(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Phi4MultimodalVisionEncoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Phi4MultimodalVisionAttention(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Phi4MultimodalVisionMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Phi4MultimodalVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Phi4MultimodalVisionEncoderLayer`].
Args:
config: Phi4MultimodalVisionConfig
"""
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[Phi4MultimodalVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
# Ignore copy
@can_return_tuple
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutput:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsequently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
class Phi4MultimodalVisionPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Phi4MultimodalVisionConfig
base_model_prefix = "phi4_vision"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalVisionEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Phi4MultimodalVisionEmbeddings):
width = (
self.config.hidden_size
if isinstance(self.config, Phi4MultimodalVisionConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, Phi4MultimodalVisionAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, Phi4MultimodalVisionMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, Phi4MultimodalVisionMultiheadAttentionPoolingHead):
nn.init.normal_(module.probe.data)
nn.init.normal_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class Phi4MultimodalVisionEmbeddings(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.patch_size = config.patch_size
self.num_patches_per_side = config.image_size // self.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.position_embedding = nn.Embedding(self.num_patches_per_side**2, config.hidden_size)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and no class embeddings.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1]
num_positions = self.position_embedding.weight.shape[0]
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
batch_size = pixel_values.size(0)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
position_ids = torch.full((batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class Phi4MultimodalVisionMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = Phi4MultimodalVisionMLP(config)
def forward(self, hidden_state, attention_mask):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
class Phi4MultimodalVisionModel(Phi4MultimodalVisionPreTrainedModel):
config_class = Phi4MultimodalVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__(config)
self.config = config
self.embeddings = Phi4MultimodalVisionEmbeddings(config)
self.encoder = Phi4MultimodalVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.head = Phi4MultimodalVisionMultiheadAttentionPoolingHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_attention_mask = torch.ones(
size=(
batch_size,
pixel_values.size(2) // self.config.patch_size,
pixel_values.size(3) // self.config.patch_size,
),
dtype=torch.bool,
device=pixel_values.device,
)
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
attention_mask = None
else:
attention_mask = (
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
if not self.config._attn_implementation == "flash_attention_2"
else patch_attention_mask
)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs.last_hidden_state
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = self.head(
hidden_state=last_hidden_state,
attention_mask=patch_attention_mask,
)
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class Phi4MultimodalImageEmbedding(nn.Module):
"""Image embedding."""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.vision_config.feature_layer
self.crop_size = config.vision_config.crop_size
self.image_dim_out = config.vision_config.hidden_size
n_patches = config.vision_config.image_size // config.vision_config.patch_size
if n_patches % 2 != 0:
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
n_patches += 1
self.num_img_tokens = (n_patches // 2) ** 2
self.drop = nn.Dropout(config.embd_pdrop)
self.img_processor = Phi4MultimodalVisionModel._from_config(config.vision_config)
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
self.img_projection_up = nn.Linear(self.image_dim_out, config.hidden_size)
self.img_projection_down = nn.Linear(config.hidden_size, config.hidden_size)
self.global_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, self.image_dim_out]))
self.sub_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out]))
def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor:
img_processor_output = self.img_processor(
img_embeds, patch_attention_mask=attention_mask, output_hidden_states=True
)
img_feature = img_processor_output.hidden_states[self.layer_idx]
patch_feature = img_feature
# reshape to 2D tensor
width = int(math.sqrt(patch_feature.size(1)))
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
# convert to NCHW
patch_feature = patch_feature.permute(0, 3, 1, 2)
if getattr(self, "img_processor_padding", None) is not None:
patch_feature = self.img_processor_padding(patch_feature)
patch_feature = self.image_token_compression(patch_feature)
# convert to NHWC
patch_feature = patch_feature.permute(0, 2, 3, 1)
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1))
return patch_feature
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: torch.FloatTensor,
image_sizes: Optional[torch.Tensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
image_pixel_values = image_pixel_values.to(self.img_processor.embeddings.patch_embedding.weight.dtype)
target_device = self.img_projection_up.bias.device
target_dtype = self.img_projection_up.bias.dtype
batch_size = image_pixel_values.shape[0]
img_features = self.get_img_features(
image_pixel_values.flatten(0, 1),
attention_mask=image_attention_mask.flatten(0, 1).to(dtype=bool, device=target_device),
)
base_feat_size = int(np.sqrt(img_features.shape[1]))
img_features = img_features.view(batch_size, -1, base_feat_size**2, self.image_dim_out)
image_sizes = image_sizes.view(-1, 2)
output_imgs = []
for idx in range(batch_size):
height, width = image_sizes[idx]
height_ratio = height // self.crop_size
width_ratio = width // self.crop_size
area_ratio = height_ratio * width_ratio
global_img = img_features[idx, :1]
global_img = global_img.reshape(1, base_feat_size, base_feat_size, self.image_dim_out).contiguous()
temporary_extensor = self.sub_img_feature_extensor.repeat(1, base_feat_size, 1, 1)
global_img = torch.cat([global_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
sub_img = img_features[idx, 1:]
sub_img = sub_img[:area_ratio]
sub_img = (
sub_img.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size, self.image_dim_out)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size, self.image_dim_out)
.contiguous()
)
if image_attention_mask is not None:
reshaped_image_attention_mask = (
image_attention_mask[idx, 1 : area_ratio + 1, 0::2, 0::2]
.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size)
)
useful_height = int(reshaped_image_attention_mask[0, :, 0].sum().item())
useful_width = int(reshaped_image_attention_mask[0, 0, :].sum().item())
sub_img = sub_img[:, :useful_height, :useful_width]
temporary_extensor = self.sub_img_feature_extensor.repeat(1, useful_height, 1, 1)
else:
temporary_extensor = self.sub_img_feature_extensor.repeat(1, height_ratio * base_feat_size, 1, 1)
sub_img = torch.cat([sub_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
# Merge global and sub
output_imgs.append(torch.cat([sub_img, self.global_img_feature_extensor, global_img], dim=1))
img_set_tensor = []
for output_img in output_imgs:
output_img = output_img.to(device=target_device, dtype=target_dtype)
img_feature_proj = self.img_projection_up(output_img)
img_feature_proj = nn.functional.gelu(img_feature_proj)
img_feature_proj = self.img_projection_down(img_feature_proj)
img_set_tensor.append(img_feature_proj)
merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0)
merged_img_set_tensor = merged_img_set_tensor.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.vision_config.image_token_id, as_tuple=True)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
image_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_img_set_tensor, accumulate=False
)
image_embeds = self.drop(image_embeds)
return image_embeds
########################################################## AUDIO #############################################
class Phi4MultimodalAudioMLP(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.act_fn = ACT2FN[config.activation]
self.gate_up_proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
hidden_states = self.layer_norm(hidden_states)
up_states = self.gate_up_proj(hidden_states)
up_states, gate = up_states.chunk(2, dim=-1)
up_states = up_states * self.act_fn(gate)
up_states = self.dropout(up_states)
hidden_states = self.down_proj(up_states)
out = self.dropout(hidden_states)
return out
class Phi4MultimodalAudioAttention(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.dropout_rate
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
**kwargs,
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Phi4MultimodalAudioDepthWiseSeperableConv1d(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig, padding: int = 0):
super().__init__()
self.dw_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size * config.depthwise_multiplier,
config.kernel_size,
1,
padding=padding,
groups=config.hidden_size,
)
self.pw_conv = nn.Conv1d(
config.hidden_size * config.depthwise_multiplier, config.depthwise_seperable_out_channel, 1, 1, 0
)
def forward(self, hidden_states):
return self.pw_conv(self.dw_conv(hidden_states))
class Phi4MultimodalAudioGluPointWiseConv(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.output_dim = config.ext_pw_out_channel
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel * 2, kernel_size=1, stride=1)
self.glu_act = ACT2FN[config.conv_glu_type]
self.b1 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
self.b2 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
def forward(self, hidden_states):
# we assume the input always has the #channel (#dim) in the last dimension of the
# tensor, so need to switch the dimension first for 1D-Conv case
hidden_states = hidden_states.permute([0, 2, 1])
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = hidden_states[:, 0 : self.output_dim, :] + self.b1
out = out * self.glu_act(hidden_states[:, self.output_dim : self.output_dim * 2, :] + self.b2)
return out.permute([0, 2, 1])
class Phi4MultimodalAudioConvModule(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.kernel_size = config.kernel_size
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.glu = Phi4MultimodalAudioGluPointWiseConv(config)
self.dw_sep_conv_1d = Phi4MultimodalAudioDepthWiseSeperableConv1d(config, padding=config.kernel_size - 1)
self.act = ACT2FN[config.conv_activation]
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel, kernel_size=1, stride=1)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.glu(self.layer_norm(hidden_states))
hidden_states = self.dw_sep_conv_1d(hidden_states.permute([0, 2, 1]))
if self.kernel_size > 1:
hidden_states = hidden_states[:, :, : -(self.kernel_size - 1)]
hidden_states = self.act(hidden_states)
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = self.dropout(hidden_states.permute([0, 2, 1]))
return out
class Phi4MultimodalAudioConformerEncoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.feed_forward_in = Phi4MultimodalAudioMLP(config)
self.self_attn = Phi4MultimodalAudioAttention(config)
self.conv = Phi4MultimodalAudioConvModule(config)
self.feed_forward_out = Phi4MultimodalAudioMLP(config)
self.layer_norm_att = nn.LayerNorm(config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
):
residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
hidden_states = self.layer_norm_att(residual)
hidden_states = residual + self.self_attn(hidden_states, attention_mask)
hidden_states = hidden_states + self.conv(hidden_states)
hidden_states = hidden_states + 0.5 * self.feed_forward_out(hidden_states)
out = self.layer_norm(hidden_states)
return out
class Phi4MultimodalAudioNemoConvSubsampling(torch.nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.subsampling_factor = config.time_reduction
self.sampling_num = int(math.log(self.subsampling_factor, 2))
self.act_fn = ACT2FN[config.nemo_activation]
conv_channels = config.nemo_conv_channels
layers = [
nn.Conv2d(1, conv_channels, kernel_size=3, stride=2, padding=1),
self.act_fn,
]
for _ in range(self.sampling_num - 1):
layers.extend(
[
nn.Conv2d(conv_channels, conv_channels, kernel_size=3, stride=2, padding=1, groups=conv_channels),
nn.Conv2d(conv_channels, conv_channels, kernel_size=1, stride=1, padding=0, groups=1),
self.act_fn,
]
)
# Aggregate the layers
self.conv = torch.nn.Sequential(*layers)
self.out = torch.nn.Linear(conv_channels * config.nemo_final_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
# Unsqueeze Channel Axis
hidden_states = hidden_states.unsqueeze(1)
hidden_states = self.conv(hidden_states)
# Flatten Channel and Frequency Axes
b, _, t, _ = hidden_states.size()
hidden_states = self.out(hidden_states.transpose(1, 2).reshape(b, t, -1))
if mask is None:
return hidden_states, None
max_audio_length = hidden_states.shape[1]
feature_lens = mask.sum(1)
padding_length = torch.ceil(feature_lens / self.subsampling_factor)
arange_ = torch.arange(0, max_audio_length, device=hidden_states.device)
pad_mask = arange_.expand(padding_length.size(0), -1) < padding_length.unsqueeze(1)
return hidden_states, pad_mask.unsqueeze(1)
class Phi4MultimodalAudioRelativeAttentionBias(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.max_distance = config.bias_max_distance
self.symmetric = config.bias_symmetric
self.num_buckets = self.max_distance
if not config.bias_symmetric:
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, config.num_attention_heads)
def forward(self, x):
# instantiate bias compatible with shape of x
max_pos = x.size(1)
context_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[:, None]
memory_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
# clipping to a maximum distance using ops that play well with ONNX export
relative_position = relative_position.masked_fill(relative_position < -self.max_distance, -self.max_distance)
relative_position = relative_position.masked_fill(
relative_position > self.max_distance - 1, self.max_distance - 1
)
# mapping from relative position to index in the bias parameter
bias_idx = relative_position
bias_idx = bias_idx.abs() if self.symmetric else bias_idx + self.num_buckets // 2
att_bias = self.bias_values(bias_idx)
att_bias = att_bias.permute(2, 0, 1).unsqueeze(0)
return att_bias
class Phi4MultimodalAudioMeanVarianceNormLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.register_buffer("global_mean", torch.zeros(config.input_size))
self.register_buffer("global_invstd", torch.ones(config.input_size))
def forward(self, x):
return (x - self.global_mean) * self.global_invstd
class Phi4MultimodalAudioPreTrainedModel(PreTrainedModel):
config_class = Phi4MultimodalAudioConfig
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalAudioConformerEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Phi4MultimodalAudioGluPointWiseConv):
module.b1.data.zero_()
module.b2.data.zero_()
def unfold_tensor(tensor, max_seq_len):
"""
For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
tensor: N, T, D
"""
_, _, D = tensor.shape
tensor = tensor.transpose(-1, -2)
# N x D x 1 x T => N x (D x max_seq_len) x T'
tensor = F.unfold(tensor[..., None, :], kernel_size=(1, max_seq_len), stride=(1, max_seq_len))
new_bsz, _, slen = tensor.shape
tensor = tensor.view(new_bsz, -1, max_seq_len, slen)
tensor = tensor.permute(0, 3, 2, 1)
tensor = tensor.view(-1, max_seq_len, D).contiguous()
return tensor
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
"""
chunk_start_idx = torch.Tensor(chunk_start_idx).long()
start_pad = torch.nn.functional.pad(
chunk_start_idx, (1, 0)
) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
end_pad = torch.nn.functional.pad(
chunk_start_idx, (0, 1), value=x_len
) # append x_len to the end, so it becomes [0,18,36,48, x_len]
seq_range = torch.arange(0, x_len).unsqueeze(-1)
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1]
seq_range_expand = torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right
class Phi4MultimodalAudioModel(Phi4MultimodalAudioPreTrainedModel):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__(config)
self.config = config
self.encoder_embedding = Phi4MultimodalAudioMeanVarianceNormLayer(config)
self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
self.relative_attention_bias_layer = Phi4MultimodalAudioRelativeAttentionBias(config)
self.encoders = nn.ModuleList(
[Phi4MultimodalAudioConformerEncoderLayer(config) for _ in range(config.num_blocks)]
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
# Create mask matrix for streaming
# S stores start index. if chunksize is 18, s is [0,18,36,....]
chunk_start_idx = np.arange(0, seq_len, chunk_size)
# avoid randomness when run evaluation or decoding
if self.training and np.random.rand() > 0.5:
# Either first or last chunk is not complete.
# If only the last one is not complete, EOS is not effective
chunk_start_idx = seq_len - chunk_start_idx
chunk_start_idx = chunk_start_idx[::-1]
chunk_start_idx = chunk_start_idx[:-1]
chunk_start_idx = np.insert(chunk_start_idx, 0, 0)
enc_streaming_mask = (
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk)
.unsqueeze(0)
.expand([batch_size, -1, -1])
)
return enc_streaming_mask
def forward_embeddings(self, hidden_states, masks):
"""Forwarding the inputs through the top embedding layers"""
seq_len = math.ceil(hidden_states.shape[1] / self.config.time_reduction)
if seq_len <= 0:
raise ValueError(
f"The squence length after time reduction is invalid: {seq_len}. Your input feature is too short."
)
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(seq_len, batch_size, self.config.chunk_size, self.config.left_chunk)
enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)
hidden_states, masks = self.embed(hidden_states, masks)
streaming_mask = enc_streaming_mask
if streaming_mask is not None and masks is not None:
hs_mask = masks & streaming_mask
elif masks is not None:
hs_mask = masks
else:
hs_mask = streaming_mask
return hidden_states, hs_mask, masks
def calculate_hs_mask(self, hidden_states, device, mask):
max_audio_length = hidden_states.shape[1]
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(
max_audio_length, batch_size, self.config.chunk_size, self.config.left_chunk
)
enc_streaming_mask = enc_streaming_mask.to(device)
if mask is None:
return enc_streaming_mask
feature_lens = mask.sum(1)
padding_length = feature_lens
pad_mask = torch.arange(0, max_audio_length, device=device).expand(
padding_length.size(0), -1
) < padding_length.unsqueeze(1)
pad_mask = pad_mask.unsqueeze(1)
pad_mask = pad_mask & enc_streaming_mask
return pad_mask
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
hidden_states = self.encoder_embedding(hidden_states)
hidden_states, hs_mask, mask = self.forward_embeddings(hidden_states, mask)
unfolded = False
bs, seq_len, _ = hidden_states.shape
max_seq_len = 500 # maxium position for absolute positional encoding
if seq_len > max_seq_len:
# audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
unfolded = True
# the unfold op will drop residual frames, pad it to the multiple of max_seq_len
if seq_len % max_seq_len > 0:
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
else:
chunk_pad_size = 0
if chunk_pad_size > 0:
hidden_states_pad = F.pad(hidden_states, (0, 0, 0, chunk_pad_size), "constant", 0)
hidden_states = hidden_states_pad.to(hidden_states.device)
hidden_states = unfold_tensor(hidden_states, max_seq_len)
masks_unfold = None
if mask is not None:
# revise hs_mask here because the previous calculated hs_mask did not consider extra pad
subsampled_pad_mask = mask.squeeze(1) # [bz, subsampled_unmask_seq_len]
extra_padded_subsamlped_pad_mask = F.pad(
subsampled_pad_mask, (0, chunk_pad_size), "constant", False
) # extra padding to the pad mask
extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
masks_unfold = unfold_tensor(
extra_padded_subsamlped_pad_mask, max_seq_len
) # unfold the pad mask like we did to the input tensor
masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
hs_mask = self.calculate_hs_mask(
hidden_states, hidden_states.device, masks_unfold
) # calculate hs_mask based on the unfolded pad mask
relative_attention_bias = self.relative_attention_bias_layer(hidden_states)
attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias
for layer in self.encoders:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
)
else:
hidden_states = layer(hidden_states, attention_mask)
if unfolded:
embed_dim = hidden_states.shape[-1]
hidden_states = hidden_states.reshape(bs, -1, embed_dim)
# if we ever padded before unfolding, we need to remove the padding
if chunk_pad_size > 0:
hidden_states = hidden_states[:, :-chunk_pad_size, :]
return hidden_states
class Phi4MultimodalAudioEmbedding(nn.Module):
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.audio_config.feature_layer
self.drop = nn.Dropout(config.embd_pdrop)
self.encoder = Phi4MultimodalAudioModel._from_config(config.audio_config)
self.up_proj_for_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_speech = nn.Linear(config.hidden_size, config.hidden_size)
self.up_proj_for_vision_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_vision_speech = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
audio_input_features: torch.FloatTensor,
audio_embed_sizes=None,
audio_attention_mask=None,
audio_projection_mode="speech",
) -> torch.FloatTensor:
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.audio_config.audio_token_id, as_tuple=True)
up_proj = self.up_proj_for_speech if audio_projection_mode == "speech" else self.up_proj_for_vision_speech
down_proj = (
self.down_proj_for_speech if audio_projection_mode == "speech" else self.down_proj_for_vision_speech
)
target_device = up_proj.bias.device
target_dtype = up_proj.bias.dtype
audio_input_features = audio_input_features.to(device=target_device, dtype=target_dtype)
audio_encoder_hidden_states = self.encoder(audio_input_features, audio_attention_mask)
audio_encoder_hidden_states = up_proj(audio_encoder_hidden_states)
audio_encoder_hidden_states = nn.functional.gelu(audio_encoder_hidden_states)
audio_embeds = down_proj(audio_encoder_hidden_states)
merged_audio_embeds = torch.cat(
[audio_embeds[i, : audio_embed_sizes[i], :] for i in range(len(audio_embed_sizes))], dim=0
)
merged_audio_embeds = merged_audio_embeds.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
audio_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_audio_embeds, accumulate=False
)
audio_embeds = self.drop(audio_embeds)
return audio_embeds
class Phi4MultimodalRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Phi4MultimodalRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Phi4MultimodalMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
return q_embed, k_embed
class Phi4MultimodalAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi4MultimodalConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Phi4MultimodalDecoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi4MultimodalAttention(config=config, layer_idx=layer_idx)
self.mlp = Phi4MultimodalMLP(config)
self.input_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.config = config
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Phi4MultimodalFeatureEmbedding(nn.Module):
"""Image-audio embedding."""
def __init__(self, config: Phi4MultimodalConfig) -> None:
super().__init__()
self.config = config
self.image_token_id = config.vision_config.image_token_id
self.audio_token_id = config.audio_config.audio_token_id
self.image_embed = Phi4MultimodalImageEmbedding(config)
self.audio_embed = Phi4MultimodalAudioEmbedding(config)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: Optional[torch.FloatTensor] = None,
audio_input_features: Optional[torch.FloatTensor] = None,
image_sizes=None,
image_attention_mask=None,
audio_embed_sizes=None,
audio_attention_mask=None,
) -> torch.FloatTensor:
with torch.no_grad():
image_position_mask = (input_ids == self.config.vision_config.image_token_id).unsqueeze(-1)
non_image_position_mask = ~image_position_mask
image_embeds = None
audio_embeds = None
if image_pixel_values is not None and (input_ids == self.image_token_id).any():
image_embeds = self.image_embed(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
)
if audio_input_features is not None and (input_ids == self.audio_token_id).any():
audio_projection_mode = "vision" if image_pixel_values is not None else "speech"
audio_embeds = self.audio_embed(
input_ids,
inputs_embeds,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
audio_projection_mode=audio_projection_mode,
)
# merge image and audio
if image_embeds is not None and audio_embeds is not None:
inputs_embeds = image_embeds * image_position_mask + audio_embeds * non_image_position_mask
elif image_embeds is not None:
inputs_embeds = image_embeds
elif audio_embeds is not None:
inputs_embeds = audio_embeds
return inputs_embeds
class Phi4MultimodalRotaryEmbedding(nn.Module):
def __init__(self, config: Phi4MultimodalConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
PHI4_MULTIMODAL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Phi4MultimodalConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.",
PHI4_MULTIMODAL_START_DOCSTRING,
)
class Phi4MultimodalPreTrainedModel(PreTrainedModel):
config_class = Phi4MultimodalConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_version = "0.0.5"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Phi4MultimodalRMSNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, Phi4MultimodalImageEmbedding):
module.global_img_feature_extensor.data.zero_()
module.sub_img_feature_extensor.data.zero_()
PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`)`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
See our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
image_pixel_values (`torch.FloatTensor`, *optional*):
If the input contains images, these correspond to the pixel values after transformations (as returned by
the Processor)
image_sizes (`torch.LongTensor`, *optional*):
If the input contains images, these correspond to size of each image.
image_attention_mask (`torch.LongTensor`, *optional*):
Attention mask for the images.
audio_input_features (`torch.FloatTensor`, *optional*):
If the input contains audio samples, these correspond to the values after transformation (as returned by
the Processor).
audio_embed_sizes (`torch.Tensor`, *optional*):
Size of the audio inputs.
audio_attention_mask (`torch.Tensor, *optional*):
Attention mask for the audio inputs.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.",
PHI4_MULTIMODAL_START_DOCSTRING,
)
class Phi4MultimodalModel(Phi4MultimodalPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MultimodalMMDecoderLayer`]
Args:
config: Phi4MultimodalMMConfig
"""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Phi4MultimodalDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Phi4MultimodalRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.embed_tokens_extend = Phi4MultimodalFeatureEmbedding(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.embed_tokens_extend(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
audio_input_features=audio_input_features,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Phi4Multimodal. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Phi4MultimodalConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Phi4MultimodalConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.get_text_config().sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.get_text_config().sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Phi4MultimodalForCausalLM(Phi4MultimodalPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Phi4MultimodalModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=Phi4MultimodalConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Phi4MultimodalForCausalLM
>>> model = Phi4MultimodalForCausalLM.from_pretrained("TBA")
>>> tokenizer = AutoTokenizer.from_pretrained("TBA")
>>> prompt = "This is an example script ."
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_pixel_values=None,
image_sizes=None,
image_attention_mask=None,
audio_input_features=None,
audio_embed_sizes=None,
audio_attention_mask=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=0,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
__all__ = [
"Phi4MultimodalAudioPreTrainedModel",
"Phi4MultimodalAudioModel",
"Phi4MultimodalVisionPreTrainedModel",
"Phi4MultimodalVisionModel",
"Phi4MultimodalPreTrainedModel",
"Phi4MultimodalModel",
"Phi4MultimodalForCausalLM",
]
Phi4MultimodalForCausalLM.register_for_auto_class("AutoModelForCausalLM") |