File size: 12,339 Bytes
698b586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Processor class for Phi4Multimodal
"""

import math
from typing import List, Optional, Union, TypedDict

import torch
from torchvision.transforms import functional as F

from transformers.image_processing_utils_fast import (
    BaseImageProcessorFast,
    BatchFeature,
    Unpack,
    convert_to_rgb,
    ChannelDimension
)
from transformers.image_utils import ImageInput, make_flat_list_of_images, valid_images
from transformers.utils import TensorType, logging


logger = logging.get_logger(__name__)


class DefaultFastImageProcessorKwargs(TypedDict, total=False):
    do_resize: Optional[bool]
    size: Optional[dict[str, int]]
    default_to_square: Optional[bool]
    resample: Optional[Union["PILImageResampling", "F.InterpolationMode"]]
    do_center_crop: Optional[bool]
    crop_size: Optional[dict[str, int]]
    do_rescale: Optional[bool]
    rescale_factor: Optional[Union[int, float]]
    do_normalize: Optional[bool]
    image_mean: Optional[Union[float, list[float]]]
    image_std: Optional[Union[float, list[float]]]
    do_convert_rgb: Optional[bool]
    return_tensors: Optional[Union[str, TensorType]]
    data_format: Optional[ChannelDimension]
    input_data_format: Optional[Union[str, ChannelDimension]]
    device: Optional["torch.device"]


class Phi4MultimodalFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
    image_size: Optional[int]
    patch_size: Optional[int]
    dynamic_hd: Optional[int]


class Phi4MultimodalImageProcessorFast(BaseImageProcessorFast):
    r"""
    Constructs a Phi4Multimodal image processor.
    """

    image_size = 448
    patch_size = 14
    dynamic_hd = 36
    image_mean = [0.5, 0.5, 0.5]
    image_std = [0.5, 0.5, 0.5]
    valid_init_kwargs = Phi4MultimodalFastImageProcessorKwargs
    model_input_names = ["image_pixel_values", "image_sizes", "image_attention_mask"]

    def __init__(self, **kwargs: Unpack[Phi4MultimodalFastImageProcessorKwargs]):
        super().__init__(**kwargs)

    def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height):
        best_ratio_diff = float("inf")
        best_ratio = (1, 1)
        area = width * height
        for ratio in target_ratios:
            target_aspect_ratio = ratio[0] / ratio[1]
            ratio_diff = abs(aspect_ratio - target_aspect_ratio)
            if ratio_diff < best_ratio_diff:
                best_ratio_diff = ratio_diff
                best_ratio = ratio
            elif ratio_diff == best_ratio_diff:
                if area > 0.5 * self.image_size * self.image_size * ratio[0] * ratio[1]:
                    best_ratio = ratio
        return best_ratio

    def dynamic_preprocess(self, image, max_num=36, min_num=1):
        image_size = self.image_size
        patch_size = self.patch_size
        mask_size = image_size // patch_size
        orig_width, orig_height = image.size

        w_crop_num = math.ceil(orig_width / float(image_size))
        h_crop_num = math.ceil(orig_height / float(image_size))
        if w_crop_num * h_crop_num > max_num:
            aspect_ratio = orig_width / orig_height

            # calculate the existing image aspect ratio
            target_ratios = {
                (i, j)
                for n in range(min_num, max_num + 1)
                for i in range(1, n + 1)
                for j in range(1, n + 1)
                if i * j <= max_num and i * j >= min_num
            }
            target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

            # find the closest aspect ratio to the target
            target_aspect_ratio = self.find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height)

            # calculate the target width and height
            target_width = image_size * target_aspect_ratio[0]
            target_height = image_size * target_aspect_ratio[1]
        else:
            target_width = image_size * w_crop_num
            target_height = image_size * h_crop_num
            target_aspect_ratio = (w_crop_num, h_crop_num)

        # Calculate the ratio
        ratio_width = target_width / orig_width
        ratio_height = target_height / orig_height
        if ratio_width < ratio_height:
            new_size = (target_width, int(orig_height * ratio_width))
            padding_width = 0
            padding_height = target_height - int(orig_height * ratio_width)
        else:
            new_size = (int(orig_width * ratio_height), target_height)
            padding_width = target_width - int(orig_width * ratio_height)
            padding_height = 0

        attention_mask = torch.ones((int(mask_size * target_aspect_ratio[1]), int(mask_size * target_aspect_ratio[0])))
        if padding_width >= patch_size:
            attention_mask[:, -math.floor(padding_width / patch_size) :] = 0
        if padding_height >= patch_size:
            attention_mask[-math.floor(padding_height / patch_size) :, :] = 0

        if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
            raise ValueError(f"the aspect ratio is very extreme {new_size}")

        image = F.resize(image, [new_size[1], new_size[0]])
        resized_img = F.pad(image, [0, 0, padding_width, padding_height], fill=[255, 255, 255])

        return resized_img, attention_mask

    def pad_to_max_num_crops(self, images, max_crops=5):
        """
        images: B x 3 x H x W, B<=max_crops
        """
        B, _, H, W = images.shape
        if B < max_crops:
            pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
            images = torch.cat([images, pad], dim=0)
        return images

    def pad_mask_to_max_num_crops(self, masks, max_crops=5):
        B, H, W = masks.shape
        if B < max_crops:
            pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
            masks = torch.cat([masks, pad], dim=0)
        return masks

    def preprocess(
        self,
        images: ImageInput,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
        """
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std

        images = make_flat_list_of_images(images)
        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )
        images = [convert_to_rgb(image) for image in images]

        image_size = self.image_size
        patch_size = self.patch_size
        mask_size = image_size // patch_size
        imgs_and_masks = [self.dynamic_preprocess(image, max_num=self.dynamic_hd) for image in images]
        images, image_attention_masks = [x[0] for x in imgs_and_masks], [x[1] for x in imgs_and_masks]

        images = [F.to_tensor(image) for image in images]
        hd_images = [F.normalize(image, image_mean, image_std) for image in images]
        global_image = [
            torch.nn.functional.interpolate(
                image.unsqueeze(0).float(),
                size=(image_size, image_size),
                mode="bicubic",
            ).to(image.dtype)
            for image in hd_images
        ]

        shapes = [[image.size(1), image.size(2)] for image in hd_images]
        mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
        global_attention_mask = [torch.ones((1, mask_size, mask_size)) for _ in hd_images]

        hd_images_reshape = []
        for im, (h, w) in zip(hd_images, shapes):
            im = im.reshape(1, 3, h // image_size, image_size, w // image_size, image_size)
            im = im.permute(0, 2, 4, 1, 3, 5)
            im = im.reshape(-1, 3, image_size, image_size)
            hd_images_reshape.append(im.contiguous())

        attention_masks_reshape = []
        for mask, (h, w) in zip(image_attention_masks, mask_shapes):
            mask = mask.reshape(h // mask_size, mask_size, w // mask_size, mask_size)
            mask = mask.transpose(1, 2)
            mask = mask.reshape(-1, mask_size, mask_size)
            attention_masks_reshape.append(mask.contiguous())

        downsample_attention_masks = []
        for mask, (h, w) in zip(attention_masks_reshape, mask_shapes):
            mask = mask[:, 0::2, 0::2]
            mask = mask.reshape(
                h // mask_size, w // mask_size, mask_size // 2 + mask_size % 2, mask_size // 2 + mask_size % 2
            )
            mask = mask.transpose(1, 2)
            mask = mask.reshape(mask.size(0) * mask.size(1), mask.size(2) * mask.size(3))
            downsample_attention_masks.append(mask)

        num_img_tokens = [
            256 + 1 + int(mask.sum().item()) + int(mask[:, 0].sum().item()) + 16 for mask in downsample_attention_masks
        ]

        hd_images_reshape = [
            torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)
        ]
        hd_masks_reshape = [
            torch.cat([_global_mask] + [_mask], dim=0)
            for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)
        ]
        max_crops = max([img.size(0) for img in hd_images_reshape])
        image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
        image_transformed = torch.stack(image_transformed, dim=0)
        mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
        mask_transformed = torch.stack(mask_transformed, dim=0)

        returned_input_image_embeds = image_transformed
        returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
        returned_image_attention_mask = mask_transformed
        returned_num_img_tokens = num_img_tokens

        data = {
            "image_pixel_values": returned_input_image_embeds,
            "image_sizes": returned_image_sizes,
            "image_attention_mask": returned_image_attention_mask,
            "num_img_tokens": returned_num_img_tokens,
        }

        return BatchFeature(data=data, tensor_type=return_tensors)


__all__ = ["Phi4MultimodalImageProcessorFast"]

Phi4MultimodalImageProcessorFast.register_for_auto_class()