File size: 15,746 Bytes
698b586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Processor class for Phi4Multimodal
"""

from typing import Optional, Union, List, Tuple

import numpy as np

from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BatchFeature
from transformers.utils import TensorType, is_torch_available, logging


if is_torch_available():
    import torch


logger = logging.get_logger(__name__)

AudioInput = Union[
    np.ndarray, "torch.Tensor", List[np.ndarray], Tuple[np.ndarray], List["torch.Tensor"], Tuple["torch.Tensor"]  # noqa: F821
]


# TODO: @eustlb, remove this once #36603 is merged.
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
    """Create a Mel filter-bank the same as SpeechLib FbankFC.

    Args:
        sample_rate (int): Sample rate in Hz. number > 0 [scalar]
        n_fft (int): FFT size. int > 0 [scalar]
        n_mel (int): Mel filter size. int > 0 [scalar]
        fmin (float): lowest frequency (in Hz). If None use 0.0.
            float >= 0 [scalar]
        fmax: highest frequency (in Hz). If None use sample_rate / 2.
            float >= 0 [scalar]

    Returns
        out (numpy.ndarray): Mel transform matrix
            [shape=(n_mels, 1 + n_fft/2)]
    """

    bank_width = int(n_fft // 2 + 1)
    if fmax is None:
        fmax = sample_rate / 2
    if fmin is None:
        fmin = 0
    assert fmin >= 0, "fmin cannot be negtive"
    assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"

    def mel(f):
        return 1127.0 * np.log(1.0 + f / 700.0)

    def bin2mel(fft_bin):
        return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))

    def f2bin(f):
        return int((f * n_fft / sample_rate) + 0.5)

    # Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
    klo = f2bin(fmin) + 1
    khi = f2bin(fmax)

    khi = max(khi, klo)

    # Spec 2: SpeechLib uses trianges in Mel space
    mlo = mel(fmin)
    mhi = mel(fmax)
    m_centers = np.linspace(mlo, mhi, n_mels + 2)
    ms = (mhi - mlo) / (n_mels + 1)

    matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
    for m in range(0, n_mels):
        left = m_centers[m]
        center = m_centers[m + 1]
        right = m_centers[m + 2]
        for fft_bin in range(klo, khi):
            mbin = bin2mel(fft_bin)
            if left < mbin < right:
                matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms

    return matrix


class Phi4MultimodalFeatureExtractor(SequenceFeatureExtractor):
    model_input_names = ["audio_input_features", "audio_embed_sizes", "audio_attention_mask"]

    def __init__(
        self,
        feature_size: int = 80,
        sampling_rate: int = 16000,
        hop_length: int = 160,
        n_fft: int = 512,
        win_length: int = 400,
        preemphasis: float = 0.97,
        padding_value: float = 0.0,
        audio_compression_rate: int = 8,
        audio_downsample_rate: int = 1,
        audio_feat_stride: int = 1,
        mel_min_frequency: float = 0,
        mel_max_frequency: float = 7690,
        **kwargs,
    ):
        super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)

        self.hop_length = hop_length
        self.n_fft = n_fft
        self.win_length = win_length
        self.preemphasis = preemphasis
        self.padding_value = padding_value
        self.audio_compression_rate = audio_compression_rate
        self.audio_downsample_rate = audio_downsample_rate
        self.audio_feat_stride = audio_feat_stride

        # TODO: @eustlb, uncomment and remove speechlib_mel once #36603 is merged.
        # self.mel_filters = mel_filter_bank(
        #     num_frequency_bins=self.n_fft // 2 + 1,
        #     num_mel_filters=self.feature_size,
        #     min_frequency=mel_min_frequency,
        #     max_frequency=mel_max_frequency,
        #     sampling_rate=self.sampling_rate,
        #     triangularize_in_mel_space=True,
        #     mel_scale="kaldi",
        # )
        self.mel_filters = speechlib_mel(
            self.sampling_rate, self.n_fft, self.feature_size, mel_min_frequency, mel_max_frequency
        ).T

    def __call__(
        self,
        raw_speech: AudioInput,
        sampling_rate: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        padding: Optional[str] = "longest",
        max_length: Optional[int] = None,
        truncation: bool = False,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_attention_mask: Optional[bool] = True,
        device: Optional[str] = "cpu",
        **kwargs,
    ) -> BatchFeature:
        """
        Main method to featurize and prepare for the model one or several audio sequence(s). Implementation uses PyTorch for
        the STFT computation if available, otherwise a slower NumPy based one.

        Args:
            raw_speech (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The sequence or batch of sequences to be processed. Each sequence can be a numpy array or PyTorch tensor.
                For batched inputs, sequences can be a list of numpy arrays or PyTorch tensors, or a single numpy array or
                PyTorch tensor with first dimension being the batch size.
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors.
            pad_to_multiple_of (`int`, *optional*, defaults to None):
                If set will pad the sequence to a multiple of the provided value.
            padding (`str`, *optional*, defaults to "longest"):
                Padding strategy. Can be "longest" to pad to the longest sequence in the batch, or a specific length.
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length.
            truncation (`bool`, *optional*, defaults to False):
                Activates truncation to cut input sequences longer than *max_length* to *max_length*.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of numpy arrays. Acceptable values are:
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
                - `'tf'`: Return TensorFlow `tf.constant` objects.
            return_attention_mask (`bool`, *optional*, defaults to `True`):
                Whether to return the extracted audio input features' attention mask.
            device (`str`, *optional*, defaults to "cpu"):
                Specifies the device for computation of the audio features. (e.g., "cpu", "cuda")

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:
                - **audio_input_features** -- Audio features extracted from the raw audio input, shape (batch_size, max_feature_length, feature_size).
                - **audio_lengths** -- Length of each audio sample in the batch, shape (batch_size,).
                - **audio_attention_mask** -- Attention mask for the audio input, shape (batch_size, max_feature_length).
                If `return_tensors` is not specified, the fields will be PyTorch tensors if PyTorch is available, otherwise NumPy arrays.
        """
        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
                    f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
                    f" was sampled with {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        # Convert to torch tensor
        if isinstance(raw_speech, np.ndarray):
            raw_speech = torch.tensor(raw_speech)
        elif isinstance(raw_speech, (list, tuple)) and isinstance(raw_speech[0], np.ndarray):
            raw_speech = [torch.tensor(speech) for speech in raw_speech]

        is_batched_torch = isinstance(raw_speech, torch.Tensor) and len(raw_speech.shape) > 1
        if is_batched_torch and len(raw_speech.shape) > 2:
            logger.warning(
                f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
                "We will take the mean of the channels to convert to mono."
            )
            raw_speech = raw_speech.mean(-1)

        is_batched_sequence = isinstance(raw_speech, (list, tuple))
        if is_batched_sequence:
            for speech in raw_speech:
                if len(speech.shape) > 1:
                    logger.warning(
                        f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
                        "We will take the mean of the channels to convert to mono."
                    )
                    speech = speech.mean(-1)

        if is_batched_torch or is_batched_sequence:
            raw_speech = [speech[:, None].to(torch.float32) for speech in raw_speech]
        else:
            raw_speech = [raw_speech[:, None].to(torch.float32)]

        audio_lengths = [len(speech) for speech in raw_speech]

        # convert into correct format for padding
        batched_speech = BatchFeature(data={"audio_input_features": raw_speech, "audio_lengths": audio_lengths})
        padded_inputs = self.pad(
            batched_speech,
            padding=padding,
            max_length=max_length,
            truncation=truncation,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors="pt",
        )
        input_features = padded_inputs.audio_input_features.squeeze(-1)
        audio_lengths = padded_inputs.audio_lengths

        input_features = self._torch_extract_fbank_features(input_features, audio_lengths, device)

        feature_lengths = (audio_lengths - self.win_length) // self.hop_length + 1
        feature_lengths = feature_lengths * self.audio_feat_stride
        audio_embed_sizes = self._compute_audio_embed_size(feature_lengths)

        feature_attention_mask = (
            torch.arange(0, feature_lengths.max()) if is_torch_available() else np.arange(0, feature_lengths.max())
        )
        feature_attention_mask = (
            feature_attention_mask[None, :] < feature_lengths[:, None] if len(feature_lengths) > 1 else None
        )

        data = {
            "audio_input_features": input_features,
            "audio_embed_sizes": audio_embed_sizes,
        }
        if feature_attention_mask is not None and return_attention_mask:
            data["audio_attention_mask"] = feature_attention_mask

        return BatchFeature(data=data, tensor_type=return_tensors)

    # TODO; @eustlb, move this to audio_utils in a general spectogram_batch function that handles torch and numpy
    def _torch_extract_fbank_features(
        self, waveform: "torch.FloatTensor", audio_lengths: "torch.Tensor", device: str = "cpu"
    ) -> "torch.FloatTensor":
        """
        Compute the log mel-scaled spectrogram of batched waveforms using PyTorch's FFT implementation.

        Args:
            waveform (torch.FloatTensor` of shape `(batch_size, max_audio_length)`):
                The batched waveforms.
            audio_lengths (`torch.Tensor` of shape `(batch_size,)`):
                The lengths of the waveforms along the max_audio_length dimension.
            device (`str`, *optional*, defaults to "cpu"):
                The device to run the computation on. (e.g., "cpu", "cuda")

        Returns:
            `torch.FloatTensor` of shape `(batch_size, max_feature_length, feature_size)`:
                The log mel-scaled spectrogram of the batched waveforms.
        """
        fft_window = torch.hamming_window(self.win_length, periodic=False, device=device, dtype=torch.float64)

        # batched implementation
        batch_size = waveform.shape[0]
        frames = waveform.unfold(-1, self.win_length, self.hop_length)

        # ---
        # the unbatched (and unpaded) original implementation skips last few audio values that can't be included in a frame
        # we need to ensure that the corresponding frames for the padded input also mask these values
        if batch_size > 1:
            frames = frames.clone()
            # concerned batch indices
            to_mask_batch_idxs = torch.arange(batch_size)[audio_lengths != audio_lengths.max()]
            if to_mask_batch_idxs.numel() > 0:
                batch_idxs_down = (audio_lengths[to_mask_batch_idxs] - self.win_length) // self.hop_length + 1
                batch_idxs_up = audio_lengths[to_mask_batch_idxs] // self.hop_length + 1
                offset_idx = batch_idxs_down.min()
                max_idx = batch_idxs_up.max()

                mask = torch.arange(max_idx - offset_idx, device=device).expand(to_mask_batch_idxs.shape[0], -1)
                mask = ((batch_idxs_down - offset_idx).unsqueeze(1) <= mask) & (
                    mask < (batch_idxs_up - offset_idx).unsqueeze(1)
                )
                mask = mask.unsqueeze(-1).expand(-1, -1, self.win_length)
                masked_frames = frames[to_mask_batch_idxs, offset_idx:max_idx].masked_fill_(mask, 0)
                frames[to_mask_batch_idxs, offset_idx:max_idx] = masked_frames
        # ---

        # apply pre-emphasis first order filter on fft windows
        frames_prev = torch.roll(frames, 1, dims=-1)
        frames_prev[:, :, 0] = frames_prev[:, :, 1]
        frames = (frames - self.preemphasis * frames_prev) * 32768

        # apply fft
        S = torch.fft.rfft(fft_window * frames.view(-1, self.win_length), n=self.n_fft, dim=1)
        S = S.view(frames.shape[0], -1, S.shape[-1])
        S = S.to(torch.complex64)

        spec = torch.abs(S)
        spec_power = spec**2

        # apply triangular mel filter bank
        mel_filters = torch.from_numpy(self.mel_filters).to(device, torch.float32)
        log_spec = torch.clamp(spec_power @ mel_filters, min=1.0)
        log_spec = torch.log(log_spec)

        return log_spec

    def _compute_audio_embed_size(self, audio_frames):
        integer = audio_frames // self.audio_compression_rate
        remainder = audio_frames % self.audio_compression_rate
        result = integer + (remainder > 0).to(integer.dtype)

        integer = result // self.audio_downsample_rate
        remainder = result % self.audio_downsample_rate
        result = integer + (remainder > 0).to(integer.dtype)  # qformer compression

        return result


__all__ = ["Phi4MultimodalFeatureExtractor"]

Phi4MultimodalFeatureExtractor.register_for_auto_class()