File size: 15,746 Bytes
698b586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi4Multimodal
"""
from typing import Optional, Union, List, Tuple
import numpy as np
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BatchFeature
from transformers.utils import TensorType, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
AudioInput = Union[
np.ndarray, "torch.Tensor", List[np.ndarray], Tuple[np.ndarray], List["torch.Tensor"], Tuple["torch.Tensor"] # noqa: F821
]
# TODO: @eustlb, remove this once #36603 is merged.
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
Args:
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
n_fft (int): FFT size. int > 0 [scalar]
n_mel (int): Mel filter size. int > 0 [scalar]
fmin (float): lowest frequency (in Hz). If None use 0.0.
float >= 0 [scalar]
fmax: highest frequency (in Hz). If None use sample_rate / 2.
float >= 0 [scalar]
Returns
out (numpy.ndarray): Mel transform matrix
[shape=(n_mels, 1 + n_fft/2)]
"""
bank_width = int(n_fft // 2 + 1)
if fmax is None:
fmax = sample_rate / 2
if fmin is None:
fmin = 0
assert fmin >= 0, "fmin cannot be negtive"
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
def mel(f):
return 1127.0 * np.log(1.0 + f / 700.0)
def bin2mel(fft_bin):
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
def f2bin(f):
return int((f * n_fft / sample_rate) + 0.5)
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
klo = f2bin(fmin) + 1
khi = f2bin(fmax)
khi = max(khi, klo)
# Spec 2: SpeechLib uses trianges in Mel space
mlo = mel(fmin)
mhi = mel(fmax)
m_centers = np.linspace(mlo, mhi, n_mels + 2)
ms = (mhi - mlo) / (n_mels + 1)
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
for m in range(0, n_mels):
left = m_centers[m]
center = m_centers[m + 1]
right = m_centers[m + 2]
for fft_bin in range(klo, khi):
mbin = bin2mel(fft_bin)
if left < mbin < right:
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
return matrix
class Phi4MultimodalFeatureExtractor(SequenceFeatureExtractor):
model_input_names = ["audio_input_features", "audio_embed_sizes", "audio_attention_mask"]
def __init__(
self,
feature_size: int = 80,
sampling_rate: int = 16000,
hop_length: int = 160,
n_fft: int = 512,
win_length: int = 400,
preemphasis: float = 0.97,
padding_value: float = 0.0,
audio_compression_rate: int = 8,
audio_downsample_rate: int = 1,
audio_feat_stride: int = 1,
mel_min_frequency: float = 0,
mel_max_frequency: float = 7690,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.hop_length = hop_length
self.n_fft = n_fft
self.win_length = win_length
self.preemphasis = preemphasis
self.padding_value = padding_value
self.audio_compression_rate = audio_compression_rate
self.audio_downsample_rate = audio_downsample_rate
self.audio_feat_stride = audio_feat_stride
# TODO: @eustlb, uncomment and remove speechlib_mel once #36603 is merged.
# self.mel_filters = mel_filter_bank(
# num_frequency_bins=self.n_fft // 2 + 1,
# num_mel_filters=self.feature_size,
# min_frequency=mel_min_frequency,
# max_frequency=mel_max_frequency,
# sampling_rate=self.sampling_rate,
# triangularize_in_mel_space=True,
# mel_scale="kaldi",
# )
self.mel_filters = speechlib_mel(
self.sampling_rate, self.n_fft, self.feature_size, mel_min_frequency, mel_max_frequency
).T
def __call__(
self,
raw_speech: AudioInput,
sampling_rate: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
padding: Optional[str] = "longest",
max_length: Optional[int] = None,
truncation: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
device: Optional[str] = "cpu",
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several audio sequence(s). Implementation uses PyTorch for
the STFT computation if available, otherwise a slower NumPy based one.
Args:
raw_speech (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The sequence or batch of sequences to be processed. Each sequence can be a numpy array or PyTorch tensor.
For batched inputs, sequences can be a list of numpy arrays or PyTorch tensors, or a single numpy array or
PyTorch tensor with first dimension being the batch size.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
padding (`str`, *optional*, defaults to "longest"):
Padding strategy. Can be "longest" to pad to the longest sequence in the batch, or a specific length.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length.
truncation (`bool`, *optional*, defaults to False):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of numpy arrays. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
- `'tf'`: Return TensorFlow `tf.constant` objects.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the extracted audio input features' attention mask.
device (`str`, *optional*, defaults to "cpu"):
Specifies the device for computation of the audio features. (e.g., "cpu", "cuda")
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **audio_input_features** -- Audio features extracted from the raw audio input, shape (batch_size, max_feature_length, feature_size).
- **audio_lengths** -- Length of each audio sample in the batch, shape (batch_size,).
- **audio_attention_mask** -- Attention mask for the audio input, shape (batch_size, max_feature_length).
If `return_tensors` is not specified, the fields will be PyTorch tensors if PyTorch is available, otherwise NumPy arrays.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
"Failing to do so can result in silent errors that might be hard to debug."
)
# Convert to torch tensor
if isinstance(raw_speech, np.ndarray):
raw_speech = torch.tensor(raw_speech)
elif isinstance(raw_speech, (list, tuple)) and isinstance(raw_speech[0], np.ndarray):
raw_speech = [torch.tensor(speech) for speech in raw_speech]
is_batched_torch = isinstance(raw_speech, torch.Tensor) and len(raw_speech.shape) > 1
if is_batched_torch and len(raw_speech.shape) > 2:
logger.warning(
f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
"We will take the mean of the channels to convert to mono."
)
raw_speech = raw_speech.mean(-1)
is_batched_sequence = isinstance(raw_speech, (list, tuple))
if is_batched_sequence:
for speech in raw_speech:
if len(speech.shape) > 1:
logger.warning(
f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
"We will take the mean of the channels to convert to mono."
)
speech = speech.mean(-1)
if is_batched_torch or is_batched_sequence:
raw_speech = [speech[:, None].to(torch.float32) for speech in raw_speech]
else:
raw_speech = [raw_speech[:, None].to(torch.float32)]
audio_lengths = [len(speech) for speech in raw_speech]
# convert into correct format for padding
batched_speech = BatchFeature(data={"audio_input_features": raw_speech, "audio_lengths": audio_lengths})
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
input_features = padded_inputs.audio_input_features.squeeze(-1)
audio_lengths = padded_inputs.audio_lengths
input_features = self._torch_extract_fbank_features(input_features, audio_lengths, device)
feature_lengths = (audio_lengths - self.win_length) // self.hop_length + 1
feature_lengths = feature_lengths * self.audio_feat_stride
audio_embed_sizes = self._compute_audio_embed_size(feature_lengths)
feature_attention_mask = (
torch.arange(0, feature_lengths.max()) if is_torch_available() else np.arange(0, feature_lengths.max())
)
feature_attention_mask = (
feature_attention_mask[None, :] < feature_lengths[:, None] if len(feature_lengths) > 1 else None
)
data = {
"audio_input_features": input_features,
"audio_embed_sizes": audio_embed_sizes,
}
if feature_attention_mask is not None and return_attention_mask:
data["audio_attention_mask"] = feature_attention_mask
return BatchFeature(data=data, tensor_type=return_tensors)
# TODO; @eustlb, move this to audio_utils in a general spectogram_batch function that handles torch and numpy
def _torch_extract_fbank_features(
self, waveform: "torch.FloatTensor", audio_lengths: "torch.Tensor", device: str = "cpu"
) -> "torch.FloatTensor":
"""
Compute the log mel-scaled spectrogram of batched waveforms using PyTorch's FFT implementation.
Args:
waveform (torch.FloatTensor` of shape `(batch_size, max_audio_length)`):
The batched waveforms.
audio_lengths (`torch.Tensor` of shape `(batch_size,)`):
The lengths of the waveforms along the max_audio_length dimension.
device (`str`, *optional*, defaults to "cpu"):
The device to run the computation on. (e.g., "cpu", "cuda")
Returns:
`torch.FloatTensor` of shape `(batch_size, max_feature_length, feature_size)`:
The log mel-scaled spectrogram of the batched waveforms.
"""
fft_window = torch.hamming_window(self.win_length, periodic=False, device=device, dtype=torch.float64)
# batched implementation
batch_size = waveform.shape[0]
frames = waveform.unfold(-1, self.win_length, self.hop_length)
# ---
# the unbatched (and unpaded) original implementation skips last few audio values that can't be included in a frame
# we need to ensure that the corresponding frames for the padded input also mask these values
if batch_size > 1:
frames = frames.clone()
# concerned batch indices
to_mask_batch_idxs = torch.arange(batch_size)[audio_lengths != audio_lengths.max()]
if to_mask_batch_idxs.numel() > 0:
batch_idxs_down = (audio_lengths[to_mask_batch_idxs] - self.win_length) // self.hop_length + 1
batch_idxs_up = audio_lengths[to_mask_batch_idxs] // self.hop_length + 1
offset_idx = batch_idxs_down.min()
max_idx = batch_idxs_up.max()
mask = torch.arange(max_idx - offset_idx, device=device).expand(to_mask_batch_idxs.shape[0], -1)
mask = ((batch_idxs_down - offset_idx).unsqueeze(1) <= mask) & (
mask < (batch_idxs_up - offset_idx).unsqueeze(1)
)
mask = mask.unsqueeze(-1).expand(-1, -1, self.win_length)
masked_frames = frames[to_mask_batch_idxs, offset_idx:max_idx].masked_fill_(mask, 0)
frames[to_mask_batch_idxs, offset_idx:max_idx] = masked_frames
# ---
# apply pre-emphasis first order filter on fft windows
frames_prev = torch.roll(frames, 1, dims=-1)
frames_prev[:, :, 0] = frames_prev[:, :, 1]
frames = (frames - self.preemphasis * frames_prev) * 32768
# apply fft
S = torch.fft.rfft(fft_window * frames.view(-1, self.win_length), n=self.n_fft, dim=1)
S = S.view(frames.shape[0], -1, S.shape[-1])
S = S.to(torch.complex64)
spec = torch.abs(S)
spec_power = spec**2
# apply triangular mel filter bank
mel_filters = torch.from_numpy(self.mel_filters).to(device, torch.float32)
log_spec = torch.clamp(spec_power @ mel_filters, min=1.0)
log_spec = torch.log(log_spec)
return log_spec
def _compute_audio_embed_size(self, audio_frames):
integer = audio_frames // self.audio_compression_rate
remainder = audio_frames % self.audio_compression_rate
result = integer + (remainder > 0).to(integer.dtype)
integer = result // self.audio_downsample_rate
remainder = result % self.audio_downsample_rate
result = integer + (remainder > 0).to(integer.dtype) # qformer compression
return result
__all__ = ["Phi4MultimodalFeatureExtractor"]
Phi4MultimodalFeatureExtractor.register_for_auto_class() |