jeffreymeetkai commited on
Commit
8c9e2fa
·
verified ·
1 Parent(s): 703922f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -4
README.md CHANGED
@@ -21,13 +21,13 @@ The model determines when to execute functions, whether in parallel or serially,
21
 
22
  ## How to Get Started
23
 
24
- We provide custom code for both converting tool definitions into the system prompts and parsing raw model response into a JSON object containing `role`, `content` and `tool_calls` fields. This enables the model to be able to generate tool calls.
25
 
26
  ```python
27
  import torch
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
- tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-medium-v3.0", trust_remote_code=True)
31
  model = AutoModelForCausalLM.from_pretrained(
32
  "meetkai/functionary-medium-v3.0",
33
  device_map="auto",
@@ -57,7 +57,6 @@ tools = [
57
  messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
58
 
59
  final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
60
- tokenizer.padding_side = "left"
61
  inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
62
  pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
63
  print(tokenizer.decode(pred.cpu()[0]))
@@ -67,7 +66,7 @@ print(tokenizer.decode(pred.cpu()[0]))
67
 
68
  We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.
69
 
70
- This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message and use a pre-defined Transformers chat template. This means that lists of messages can be formatted for you with the apply_chat_template() method within our server:
71
 
72
  ```python
73
  from openai import OpenAI
 
21
 
22
  ## How to Get Started
23
 
24
+ We provide custom code for parsing raw model responses into a JSON object containing `role`, `content` and `tool_calls` fields. This enables the users to read the function-calling output of the model easily.
25
 
26
  ```python
27
  import torch
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
+ tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-medium-v3.0")
31
  model = AutoModelForCausalLM.from_pretrained(
32
  "meetkai/functionary-medium-v3.0",
33
  device_map="auto",
 
57
  messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
58
 
59
  final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
 
60
  inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
61
  pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
62
  print(tokenizer.decode(pred.cpu()[0]))
 
66
 
67
  We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.
68
 
69
+ This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message using a pre-defined Transformers Jinja chat template. This means that the lists of messages can be formatted for you with the apply_chat_template() method within our server:
70
 
71
  ```python
72
  from openai import OpenAI