--- license: mit language: - en base_model: - microsoft/Florence-2-large - mbreuss/flower_vla_pret pipeline_tag: robotics tags: - robotics - VLA --- # FlowerVLA - Vision-Language-Action Flow Model for CALVIN ABCD This is a pretrained FlowerVLA model for robotic manipulation trained on the CALVIN ABCD dataset. Flower is an efficient Vision-Language-Action Flow policy for robot learning that only contains 1B parameters. ## Model Description FlowerVLA is a novel architecture that: - Uses half of Florence-2 for multi-modal vision-language encoding - Employs an novel transformer-based flow matching architecture - Provides an efficient, versatile VLA policy with only ~1B parameters ## Model Performance This checkpoint contains weights for the CALVIN ABCD challenge and currently ranks 1 with the following results: | Train→Test | Method | 1 | 2 | 3 | 4 | 5 | **Avg. Len.** | |------------|--------|---|---|---|---|---|---------------| | {dataset_name} | FlowerVLA | 99.1% | 97.8% | 95.2% | 92.4% | 87.8% | 4.72 | ### Input/Output Specifications #### Inputs - RGB Static Camera: `(B, T, 3, H, W)` tensor - RGB Gripper Camera: `(B, T, 3, H, W)` tensor - Language Instructions: Text strings #### Outputs - Action Space: `(B, T, 7)` tensor representing delta EEF actions ## Usage Check out our full model implementation on Github [todo]() and follow the instructions in the readme to test the model on one of the environments. ```python obs = { "rgb_obs": { "rgb_static": static_image, "rgb_gripper": gripper_image } } goal = {"lang_text": "pick up the blue cube"} action = model.step(obs, goal) ``` ## Training Details ### Configuration - **Optimizer**: AdamW - **Learning Rate**: 2e-5 - **Weight Decay**: 0.05 @inproceedings{ reuss2025flower, # Add citation when available } ## License This model is released under the MIT license.