lakshya-rawat commited on
Commit
f21adb1
·
verified ·
1 Parent(s): ab95965

Update README.md

Browse files

![training_history.png](https://cdn-uploads.huggingface.co/production/uploads/66a7331438fbd9075584523f/MtMe5CZy3wb2nEG1wTRMc.png)

Files changed (1) hide show
  1. README.md +76 -152
README.md CHANGED
@@ -1,199 +1,123 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - document-question-answering
5
+ - layoutlmv3
6
+ - ocr
7
+ - document-understanding
8
+ - paddleocr
9
+ - multilingual
10
+ - layout-aware
11
+ - lakshya-singh
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
+ base_model:
16
+ - microsoft/layoutlmv3-base
17
+ datasets:
18
+ - nielsr/docvqa_1200_examples
19
  ---
20
 
21
+ # Document QA Model
 
 
22
 
23
+ This is a fine-tuned **document question-answering model** based on `layoutlmv3-base`. It is trained to understand documents using OCR data (via PaddleOCR) and accurately answer questions related to structured information in the document layout.
24
 
25
+ ---
26
 
27
  ## Model Details
28
 
29
  ### Model Description
30
 
31
+ - **Model Name:** `document-qa-model`
32
+ - **Base Model:** [`microsoft/layoutlmv3-base`](https://huggingface.co/microsoft/layoutlmv3-base)
33
+ - **Fine-tuned by:** Lakshya Singh (solo contributor)
34
+ - **Languages:** English, Spanish, Chinese
35
+ - **License:** Apache-2.0 (inherited from base model)
36
+ - **Intended Use:** Extract answers to structured queries from scanned documents
37
+ - **Not funded** — this project was completed independently.
38
 
39
+ ---
 
 
 
 
 
 
 
 
40
 
41
+ ## Model Sources
42
 
43
+ - **Repository:** [https://github.com/Lakshyasinghrawat12]
44
+ - **Trained on:** Adapted version of [`nielsr/docvqa_1200_examples`](https://huggingface.co/datasets/nielsr/docvqa_1200_examples)
45
+ - **Model metrics:** See ![training_history.png](https://cdn-uploads.huggingface.co/production/uploads/66a7331438fbd9075584523f/MtMe5CZy3wb2nEG1wTRMc.png)
46
 
47
+ ---
 
 
48
 
49
  ## Uses
50
 
 
 
51
  ### Direct Use
52
 
53
+ This model can be used for:
54
+ - Question Answering on document images (PDFs, invoices, utility bills)
55
+ - Information extraction tasks using OCR and layout-aware understanding
 
 
 
 
 
 
56
 
57
  ### Out-of-Scope Use
58
 
59
+ - Not suitable for conversational QA
60
+ - Not suitable for images with no OCR-processed text
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ ---
 
 
 
 
 
 
63
 
64
  ## Training Details
65
 
66
+ ### Dataset
67
 
68
+ The dataset consisted of:
69
+ - **Images** of utility bills and documents
70
+ - **OCR data** with bounding boxes (from PaddleOCR)
71
+ - **Queries** in English, Spanish, and Chinese
72
+ - **Answer spans** with match scores and positions
73
 
74
  ### Training Procedure
75
 
76
+ - Preprocessing: PaddleOCR was used to extract tokens, positions, and structure
77
+ - Model: LayoutLMv3-base
78
+ - Epochs: 4
79
+ - Learning rate schedule: Shown in image below
 
 
80
 
81
+ ### Training Metrics
82
 
83
+ - **F1 Score** (validation): ![training_history.png](https://cdn-uploads.huggingface.co/production/uploads/66a7331438fbd9075584523f/MtMe5CZy3wb2nEG1wTRMc.png)
84
+ - **Loss & Learning Rate Chart**: ![training_history.png](https://cdn-uploads.huggingface.co/production/uploads/66a7331438fbd9075584523f/MtMe5CZy3wb2nEG1wTRMc.png)
85
 
86
+ ---
 
 
 
 
87
 
88
  ## Evaluation
89
 
90
+ ### Metrics Used
91
+ - F1 score
92
+ - Match score of predicted spans
93
+ - Token overlap vs ground truth
 
 
 
 
 
 
 
94
 
95
+ ### Summary
96
 
97
+ The model performs well on document-style QA tasks, especially with:
98
+ - Clearly structured OCR results
99
+ - Document types similar to utility bills, invoices, and forms
100
 
101
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
+ ## How to Use
104
 
105
+ ```python
106
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
107
+ from PIL import Image
108
+ import torch
109
 
110
+ processor = LayoutLMv3Processor.from_pretrained("lakshya-singh/document-qa-model")
111
+ model = LayoutLMv3ForQuestionAnswering.from_pretrained("lakshya-singh/document-qa-model")
112
 
113
+ image = Image.open("your_document.png")
114
+ question = "What is the total amount due?"
115
 
116
+ inputs = processor(image, question, return_tensors="pt")
117
+ outputs = model(**inputs)
118
 
119
+ start_idx = torch.argmax(outputs.start_logits)
120
+ end_idx = torch.argmax(outputs.end_logits)
121
 
122
+ answer = processor.tokenizer.decode(inputs["input_ids"][0][start_idx:end_idx+1])
123
+ print("Answer:", answer)