Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,123 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
###
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
-
|
94 |
|
95 |
-
- **
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- document-question-answering
|
5 |
+
- layoutlmv3
|
6 |
+
- ocr
|
7 |
+
- document-understanding
|
8 |
+
- paddleocr
|
9 |
+
- multilingual
|
10 |
+
- layout-aware
|
11 |
+
- lakshya-singh
|
12 |
+
license: apache-2.0
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
base_model:
|
16 |
+
- microsoft/layoutlmv3-base
|
17 |
+
datasets:
|
18 |
+
- nielsr/docvqa_1200_examples
|
19 |
---
|
20 |
|
21 |
+
# Document QA Model
|
|
|
|
|
22 |
|
23 |
+
This is a fine-tuned **document question-answering model** based on `layoutlmv3-base`. It is trained to understand documents using OCR data (via PaddleOCR) and accurately answer questions related to structured information in the document layout.
|
24 |
|
25 |
+
---
|
26 |
|
27 |
## Model Details
|
28 |
|
29 |
### Model Description
|
30 |
|
31 |
+
- **Model Name:** `document-qa-model`
|
32 |
+
- **Base Model:** [`microsoft/layoutlmv3-base`](https://huggingface.co/microsoft/layoutlmv3-base)
|
33 |
+
- **Fine-tuned by:** Lakshya Singh (solo contributor)
|
34 |
+
- **Languages:** English, Spanish, Chinese
|
35 |
+
- **License:** Apache-2.0 (inherited from base model)
|
36 |
+
- **Intended Use:** Extract answers to structured queries from scanned documents
|
37 |
+
- **Not funded** — this project was completed independently.
|
38 |
|
39 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
## Model Sources
|
42 |
|
43 |
+
- **Repository:** [https://github.com/Lakshyasinghrawat12]
|
44 |
+
- **Trained on:** Adapted version of [`nielsr/docvqa_1200_examples`](https://huggingface.co/datasets/nielsr/docvqa_1200_examples)
|
45 |
+
- **Model metrics:** See 
|
46 |
|
47 |
+
---
|
|
|
|
|
48 |
|
49 |
## Uses
|
50 |
|
|
|
|
|
51 |
### Direct Use
|
52 |
|
53 |
+
This model can be used for:
|
54 |
+
- Question Answering on document images (PDFs, invoices, utility bills)
|
55 |
+
- Information extraction tasks using OCR and layout-aware understanding
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
### Out-of-Scope Use
|
58 |
|
59 |
+
- Not suitable for conversational QA
|
60 |
+
- Not suitable for images with no OCR-processed text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
## Training Details
|
65 |
|
66 |
+
### Dataset
|
67 |
|
68 |
+
The dataset consisted of:
|
69 |
+
- **Images** of utility bills and documents
|
70 |
+
- **OCR data** with bounding boxes (from PaddleOCR)
|
71 |
+
- **Queries** in English, Spanish, and Chinese
|
72 |
+
- **Answer spans** with match scores and positions
|
73 |
|
74 |
### Training Procedure
|
75 |
|
76 |
+
- Preprocessing: PaddleOCR was used to extract tokens, positions, and structure
|
77 |
+
- Model: LayoutLMv3-base
|
78 |
+
- Epochs: 4
|
79 |
+
- Learning rate schedule: Shown in image below
|
|
|
|
|
80 |
|
81 |
+
### Training Metrics
|
82 |
|
83 |
+
- **F1 Score** (validation): 
|
84 |
+
- **Loss & Learning Rate Chart**: 
|
85 |
|
86 |
+
---
|
|
|
|
|
|
|
|
|
87 |
|
88 |
## Evaluation
|
89 |
|
90 |
+
### Metrics Used
|
91 |
+
- F1 score
|
92 |
+
- Match score of predicted spans
|
93 |
+
- Token overlap vs ground truth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
### Summary
|
96 |
|
97 |
+
The model performs well on document-style QA tasks, especially with:
|
98 |
+
- Clearly structured OCR results
|
99 |
+
- Document types similar to utility bills, invoices, and forms
|
100 |
|
101 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
## How to Use
|
104 |
|
105 |
+
```python
|
106 |
+
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
|
107 |
+
from PIL import Image
|
108 |
+
import torch
|
109 |
|
110 |
+
processor = LayoutLMv3Processor.from_pretrained("lakshya-singh/document-qa-model")
|
111 |
+
model = LayoutLMv3ForQuestionAnswering.from_pretrained("lakshya-singh/document-qa-model")
|
112 |
|
113 |
+
image = Image.open("your_document.png")
|
114 |
+
question = "What is the total amount due?"
|
115 |
|
116 |
+
inputs = processor(image, question, return_tensors="pt")
|
117 |
+
outputs = model(**inputs)
|
118 |
|
119 |
+
start_idx = torch.argmax(outputs.start_logits)
|
120 |
+
end_idx = torch.argmax(outputs.end_logits)
|
121 |
|
122 |
+
answer = processor.tokenizer.decode(inputs["input_ids"][0][start_idx:end_idx+1])
|
123 |
+
print("Answer:", answer)
|