|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
import numpy as np |
|
from typing import Tuple, List |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
intermediate_dim (int): Dimensionality of the intermediate layer. |
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. |
|
Defaults to None. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional LayerNorm. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
layer_scale_init_value=None, |
|
adanorm_num_embeddings=None, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.adanorm = adanorm_num_embeddings is not None |
|
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, dim * 3) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(dim * 3, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward(self, x, cond_embedding_id=None): |
|
residual = x |
|
x = self.dwconv(x) |
|
x = x.transpose(1, 2) |
|
if self.adanorm: |
|
assert cond_embedding_id is not None |
|
x = self.norm(x, cond_embedding_id) |
|
else: |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.transpose(1, 2) |
|
|
|
x = residual + x |
|
return x |
|
|
|
|
|
class APNet_BWE_Model(torch.nn.Module): |
|
def __init__(self, h): |
|
super(APNet_BWE_Model, self).__init__() |
|
self.h = h |
|
self.adanorm_num_embeddings = None |
|
layer_scale_init_value = 1 / h.ConvNeXt_layers |
|
|
|
self.conv_pre_mag = nn.Conv1d(h.n_fft // 2 + 1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1)) |
|
self.norm_pre_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) |
|
self.conv_pre_pha = nn.Conv1d(h.n_fft // 2 + 1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1)) |
|
self.norm_pre_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) |
|
|
|
self.convnext_mag = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=h.ConvNeXt_channels, |
|
layer_scale_init_value=layer_scale_init_value, |
|
adanorm_num_embeddings=self.adanorm_num_embeddings, |
|
) |
|
for _ in range(h.ConvNeXt_layers) |
|
] |
|
) |
|
|
|
self.convnext_pha = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=h.ConvNeXt_channels, |
|
layer_scale_init_value=layer_scale_init_value, |
|
adanorm_num_embeddings=self.adanorm_num_embeddings, |
|
) |
|
for _ in range(h.ConvNeXt_layers) |
|
] |
|
) |
|
|
|
self.norm_post_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) |
|
self.norm_post_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) |
|
self.apply(self._init_weights) |
|
self.linear_post_mag = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) |
|
self.linear_post_pha_r = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) |
|
self.linear_post_pha_i = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, mag_nb, pha_nb): |
|
x_mag = self.conv_pre_mag(mag_nb) |
|
x_pha = self.conv_pre_pha(pha_nb) |
|
x_mag = self.norm_pre_mag(x_mag.transpose(1, 2)).transpose(1, 2) |
|
x_pha = self.norm_pre_pha(x_pha.transpose(1, 2)).transpose(1, 2) |
|
|
|
for conv_block_mag, conv_block_pha in zip(self.convnext_mag, self.convnext_pha): |
|
x_mag = x_mag + x_pha |
|
x_pha = x_pha + x_mag |
|
x_mag = conv_block_mag(x_mag, cond_embedding_id=None) |
|
x_pha = conv_block_pha(x_pha, cond_embedding_id=None) |
|
|
|
x_mag = self.norm_post_mag(x_mag.transpose(1, 2)) |
|
mag_wb = mag_nb + self.linear_post_mag(x_mag).transpose(1, 2) |
|
|
|
x_pha = self.norm_post_pha(x_pha.transpose(1, 2)) |
|
x_pha_r = self.linear_post_pha_r(x_pha) |
|
x_pha_i = self.linear_post_pha_i(x_pha) |
|
pha_wb = torch.atan2(x_pha_i, x_pha_r).transpose(1, 2) |
|
|
|
com_wb = torch.stack((torch.exp(mag_wb) * torch.cos(pha_wb), torch.exp(mag_wb) * torch.sin(pha_wb)), dim=-1) |
|
|
|
return mag_wb, pha_wb, com_wb |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), |
|
] |
|
) |
|
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for i, l in enumerate(self.convs): |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
if i > 0: |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorP(2), |
|
DiscriminatorP(3), |
|
DiscriminatorP(5), |
|
DiscriminatorP(7), |
|
DiscriminatorP(11), |
|
] |
|
) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class MultiResolutionAmplitudeDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)), |
|
num_embeddings: int = None, |
|
): |
|
super().__init__() |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorAR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] |
|
) |
|
|
|
def forward( |
|
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) |
|
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorAR(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: Tuple[int, int, int], |
|
channels: int = 64, |
|
in_channels: int = 1, |
|
num_embeddings: int = None, |
|
): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), |
|
] |
|
) |
|
if num_embeddings is not None: |
|
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) |
|
torch.nn.init.zeros_(self.emb.weight) |
|
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None |
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
x = x.squeeze(1) |
|
|
|
x = self.spectrogram(x) |
|
x = x.unsqueeze(1) |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
if cond_embedding_id is not None: |
|
emb = self.emb(cond_embedding_id) |
|
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) |
|
else: |
|
h = 0 |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x += h |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: |
|
n_fft, hop_length, win_length = self.resolution |
|
amplitude_spectrogram = torch.stft( |
|
x, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
window=None, |
|
center=True, |
|
return_complex=True, |
|
).abs() |
|
|
|
return amplitude_spectrogram |
|
|
|
|
|
class MultiResolutionPhaseDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)), |
|
num_embeddings: int = None, |
|
): |
|
super().__init__() |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorPR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] |
|
) |
|
|
|
def forward( |
|
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) |
|
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorPR(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: Tuple[int, int, int], |
|
channels: int = 64, |
|
in_channels: int = 1, |
|
num_embeddings: int = None, |
|
): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), |
|
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), |
|
] |
|
) |
|
if num_embeddings is not None: |
|
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) |
|
torch.nn.init.zeros_(self.emb.weight) |
|
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None |
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
x = x.squeeze(1) |
|
|
|
x = self.spectrogram(x) |
|
x = x.unsqueeze(1) |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
if cond_embedding_id is not None: |
|
emb = self.emb(cond_embedding_id) |
|
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) |
|
else: |
|
h = 0 |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x += h |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: |
|
n_fft, hop_length, win_length = self.resolution |
|
phase_spectrogram = torch.stft( |
|
x, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
window=None, |
|
center=True, |
|
return_complex=True, |
|
).angle() |
|
|
|
return phase_spectrogram |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean(torch.clamp(1 - dr, min=0)) |
|
g_loss = torch.mean(torch.clamp(1 + dg, min=0)) |
|
loss += r_loss + g_loss |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean(torch.clamp(1 - dg, min=0)) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
def phase_losses(phase_r, phase_g): |
|
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g)) |
|
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1))) |
|
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2))) |
|
|
|
return ip_loss, gd_loss, iaf_loss |
|
|
|
|
|
def anti_wrapping_function(x): |
|
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi) |
|
|
|
|
|
def stft_mag(audio, n_fft=2048, hop_length=512): |
|
hann_window = torch.hann_window(n_fft).to(audio.device) |
|
stft_spec = torch.stft(audio, n_fft, hop_length, window=hann_window, return_complex=True) |
|
stft_mag = torch.abs(stft_spec) |
|
return stft_mag |
|
|
|
|
|
def cal_snr(pred, target): |
|
snr = (20 * torch.log10(torch.norm(target, dim=-1) / torch.norm(pred - target, dim=-1).clamp(min=1e-8))).mean() |
|
return snr |
|
|
|
|
|
def cal_lsd(pred, target): |
|
sp = torch.log10(stft_mag(pred).square().clamp(1e-8)) |
|
st = torch.log10(stft_mag(target).square().clamp(1e-8)) |
|
return (sp - st).square().mean(dim=1).sqrt().mean() |
|
|