|
""" |
|
# WebAPI文档 |
|
|
|
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml ` |
|
|
|
## 执行参数: |
|
`-a` - `绑定地址, 默认"127.0.0.1"` |
|
`-p` - `绑定端口, 默认9880` |
|
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"` |
|
|
|
## 调用: |
|
|
|
### 推理 |
|
|
|
endpoint: `/tts` |
|
GET: |
|
``` |
|
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true |
|
``` |
|
|
|
POST: |
|
```json |
|
{ |
|
"text": "", # str.(required) text to be synthesized |
|
"text_lang: "", # str.(required) language of the text to be synthesized |
|
"ref_audio_path": "", # str.(required) reference audio path |
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion |
|
"prompt_text": "", # str.(optional) prompt text for the reference audio |
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio |
|
"top_k": 5, # int. top k sampling |
|
"top_p": 1, # float. top p sampling |
|
"temperature": 1, # float. temperature for sampling |
|
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. |
|
"batch_size": 1, # int. batch size for inference |
|
"batch_threshold": 0.75, # float. threshold for batch splitting. |
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets. |
|
"speed_factor":1.0, # float. control the speed of the synthesized audio. |
|
"streaming_mode": False, # bool. whether to return a streaming response. |
|
"seed": -1, # int. random seed for reproducibility. |
|
"parallel_infer": True, # bool. whether to use parallel inference. |
|
"repetition_penalty": 1.35 # float. repetition penalty for T2S model. |
|
"sample_steps": 32, # int. number of sampling steps for VITS model V3. |
|
"super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3. |
|
} |
|
``` |
|
|
|
RESP: |
|
成功: 直接返回 wav 音频流, http code 200 |
|
失败: 返回包含错误信息的 json, http code 400 |
|
|
|
### 命令控制 |
|
|
|
endpoint: `/control` |
|
|
|
command: |
|
"restart": 重新运行 |
|
"exit": 结束运行 |
|
|
|
GET: |
|
``` |
|
http://127.0.0.1:9880/control?command=restart |
|
``` |
|
POST: |
|
```json |
|
{ |
|
"command": "restart" |
|
} |
|
``` |
|
|
|
RESP: 无 |
|
|
|
|
|
### 切换GPT模型 |
|
|
|
endpoint: `/set_gpt_weights` |
|
|
|
GET: |
|
``` |
|
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt |
|
``` |
|
RESP: |
|
成功: 返回"success", http code 200 |
|
失败: 返回包含错误信息的 json, http code 400 |
|
|
|
|
|
### 切换Sovits模型 |
|
|
|
endpoint: `/set_sovits_weights` |
|
|
|
GET: |
|
``` |
|
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth |
|
``` |
|
|
|
RESP: |
|
成功: 返回"success", http code 200 |
|
失败: 返回包含错误信息的 json, http code 400 |
|
|
|
""" |
|
|
|
import os |
|
import sys |
|
import traceback |
|
from typing import Generator |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
sys.path.append("%s/GPT_SoVITS" % (now_dir)) |
|
|
|
import argparse |
|
import subprocess |
|
import wave |
|
import signal |
|
import numpy as np |
|
import soundfile as sf |
|
from fastapi import FastAPI, Response |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
import uvicorn |
|
from io import BytesIO |
|
from tools.i18n.i18n import I18nAuto |
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config |
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names |
|
from pydantic import BaseModel |
|
|
|
|
|
i18n = I18nAuto() |
|
cut_method_names = get_cut_method_names() |
|
|
|
parser = argparse.ArgumentParser(description="GPT-SoVITS api") |
|
parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径") |
|
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") |
|
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880") |
|
args = parser.parse_args() |
|
config_path = args.tts_config |
|
|
|
port = args.port |
|
host = args.bind_addr |
|
argv = sys.argv |
|
|
|
if config_path in [None, ""]: |
|
config_path = "GPT-SoVITS/configs/tts_infer.yaml" |
|
|
|
tts_config = TTS_Config(config_path) |
|
print(tts_config) |
|
tts_pipeline = TTS(tts_config) |
|
|
|
APP = FastAPI() |
|
|
|
|
|
class TTS_Request(BaseModel): |
|
text: str = None |
|
text_lang: str = None |
|
ref_audio_path: str = None |
|
aux_ref_audio_paths: list = None |
|
prompt_lang: str = None |
|
prompt_text: str = "" |
|
top_k: int = 5 |
|
top_p: float = 1 |
|
temperature: float = 1 |
|
text_split_method: str = "cut5" |
|
batch_size: int = 1 |
|
batch_threshold: float = 0.75 |
|
split_bucket: bool = True |
|
speed_factor: float = 1.0 |
|
fragment_interval: float = 0.3 |
|
seed: int = -1 |
|
media_type: str = "wav" |
|
streaming_mode: bool = False |
|
parallel_infer: bool = True |
|
repetition_penalty: float = 1.35 |
|
sample_steps: int = 32 |
|
super_sampling: bool = False |
|
|
|
|
|
|
|
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int): |
|
with sf.SoundFile(io_buffer, mode="w", samplerate=rate, channels=1, format="ogg") as audio_file: |
|
audio_file.write(data) |
|
return io_buffer |
|
|
|
|
|
def pack_raw(io_buffer: BytesIO, data: np.ndarray, rate: int): |
|
io_buffer.write(data.tobytes()) |
|
return io_buffer |
|
|
|
|
|
def pack_wav(io_buffer: BytesIO, data: np.ndarray, rate: int): |
|
io_buffer = BytesIO() |
|
sf.write(io_buffer, data, rate, format="wav") |
|
return io_buffer |
|
|
|
|
|
def pack_aac(io_buffer: BytesIO, data: np.ndarray, rate: int): |
|
process = subprocess.Popen( |
|
[ |
|
"ffmpeg", |
|
"-f", |
|
"s16le", |
|
"-ar", |
|
str(rate), |
|
"-ac", |
|
"1", |
|
"-i", |
|
"pipe:0", |
|
"-c:a", |
|
"aac", |
|
"-b:a", |
|
"192k", |
|
"-vn", |
|
"-f", |
|
"adts", |
|
"pipe:1", |
|
], |
|
stdin=subprocess.PIPE, |
|
stdout=subprocess.PIPE, |
|
stderr=subprocess.PIPE, |
|
) |
|
out, _ = process.communicate(input=data.tobytes()) |
|
io_buffer.write(out) |
|
return io_buffer |
|
|
|
|
|
def pack_audio(io_buffer: BytesIO, data: np.ndarray, rate: int, media_type: str): |
|
if media_type == "ogg": |
|
io_buffer = pack_ogg(io_buffer, data, rate) |
|
elif media_type == "aac": |
|
io_buffer = pack_aac(io_buffer, data, rate) |
|
elif media_type == "wav": |
|
io_buffer = pack_wav(io_buffer, data, rate) |
|
else: |
|
io_buffer = pack_raw(io_buffer, data, rate) |
|
io_buffer.seek(0) |
|
return io_buffer |
|
|
|
|
|
|
|
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000): |
|
|
|
|
|
|
|
wav_buf = BytesIO() |
|
with wave.open(wav_buf, "wb") as vfout: |
|
vfout.setnchannels(channels) |
|
vfout.setsampwidth(sample_width) |
|
vfout.setframerate(sample_rate) |
|
vfout.writeframes(frame_input) |
|
|
|
wav_buf.seek(0) |
|
return wav_buf.read() |
|
|
|
|
|
def handle_control(command: str): |
|
if command == "restart": |
|
os.execl(sys.executable, sys.executable, *argv) |
|
elif command == "exit": |
|
os.kill(os.getpid(), signal.SIGTERM) |
|
exit(0) |
|
|
|
|
|
def check_params(req: dict): |
|
text: str = req.get("text", "") |
|
text_lang: str = req.get("text_lang", "") |
|
ref_audio_path: str = req.get("ref_audio_path", "") |
|
streaming_mode: bool = req.get("streaming_mode", False) |
|
media_type: str = req.get("media_type", "wav") |
|
prompt_lang: str = req.get("prompt_lang", "") |
|
text_split_method: str = req.get("text_split_method", "cut5") |
|
|
|
if ref_audio_path in [None, ""]: |
|
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"}) |
|
if text in [None, ""]: |
|
return JSONResponse(status_code=400, content={"message": "text is required"}) |
|
if text_lang in [None, ""]: |
|
return JSONResponse(status_code=400, content={"message": "text_lang is required"}) |
|
elif text_lang.lower() not in tts_config.languages: |
|
return JSONResponse( |
|
status_code=400, |
|
content={"message": f"text_lang: {text_lang} is not supported in version {tts_config.version}"}, |
|
) |
|
if prompt_lang in [None, ""]: |
|
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"}) |
|
elif prompt_lang.lower() not in tts_config.languages: |
|
return JSONResponse( |
|
status_code=400, |
|
content={"message": f"prompt_lang: {prompt_lang} is not supported in version {tts_config.version}"}, |
|
) |
|
if media_type not in ["wav", "raw", "ogg", "aac"]: |
|
return JSONResponse(status_code=400, content={"message": f"media_type: {media_type} is not supported"}) |
|
elif media_type == "ogg" and not streaming_mode: |
|
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"}) |
|
|
|
if text_split_method not in cut_method_names: |
|
return JSONResponse( |
|
status_code=400, content={"message": f"text_split_method:{text_split_method} is not supported"} |
|
) |
|
|
|
return None |
|
|
|
|
|
async def tts_handle(req: dict): |
|
""" |
|
Text to speech handler. |
|
|
|
Args: |
|
req (dict): |
|
{ |
|
"text": "", # str.(required) text to be synthesized |
|
"text_lang: "", # str.(required) language of the text to be synthesized |
|
"ref_audio_path": "", # str.(required) reference audio path |
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker synthesis |
|
"prompt_text": "", # str.(optional) prompt text for the reference audio |
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio |
|
"top_k": 5, # int. top k sampling |
|
"top_p": 1, # float. top p sampling |
|
"temperature": 1, # float. temperature for sampling |
|
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details. |
|
"batch_size": 1, # int. batch size for inference |
|
"batch_threshold": 0.75, # float. threshold for batch splitting. |
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets. |
|
"speed_factor":1.0, # float. control the speed of the synthesized audio. |
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment. |
|
"seed": -1, # int. random seed for reproducibility. |
|
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac". |
|
"streaming_mode": False, # bool. whether to return a streaming response. |
|
"parallel_infer": True, # bool.(optional) whether to use parallel inference. |
|
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model. |
|
"sample_steps": 32, # int. number of sampling steps for VITS model V3. |
|
"super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3. |
|
} |
|
returns: |
|
StreamingResponse: audio stream response. |
|
""" |
|
|
|
streaming_mode = req.get("streaming_mode", False) |
|
return_fragment = req.get("return_fragment", False) |
|
media_type = req.get("media_type", "wav") |
|
|
|
check_res = check_params(req) |
|
if check_res is not None: |
|
return check_res |
|
|
|
if streaming_mode or return_fragment: |
|
req["return_fragment"] = True |
|
|
|
try: |
|
tts_generator = tts_pipeline.run(req) |
|
|
|
if streaming_mode: |
|
|
|
def streaming_generator(tts_generator: Generator, media_type: str): |
|
if_frist_chunk = True |
|
for sr, chunk in tts_generator: |
|
if if_frist_chunk and media_type == "wav": |
|
yield wave_header_chunk(sample_rate=sr) |
|
media_type = "raw" |
|
if_frist_chunk = False |
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue() |
|
|
|
|
|
return StreamingResponse( |
|
streaming_generator( |
|
tts_generator, |
|
media_type, |
|
), |
|
media_type=f"audio/{media_type}", |
|
) |
|
|
|
else: |
|
sr, audio_data = next(tts_generator) |
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue() |
|
return Response(audio_data, media_type=f"audio/{media_type}") |
|
except Exception as e: |
|
return JSONResponse(status_code=400, content={"message": "tts failed", "Exception": str(e)}) |
|
|
|
|
|
@APP.get("/control") |
|
async def control(command: str = None): |
|
if command is None: |
|
return JSONResponse(status_code=400, content={"message": "command is required"}) |
|
handle_control(command) |
|
|
|
|
|
@APP.get("/tts") |
|
async def tts_get_endpoint( |
|
text: str = None, |
|
text_lang: str = None, |
|
ref_audio_path: str = None, |
|
aux_ref_audio_paths: list = None, |
|
prompt_lang: str = None, |
|
prompt_text: str = "", |
|
top_k: int = 5, |
|
top_p: float = 1, |
|
temperature: float = 1, |
|
text_split_method: str = "cut0", |
|
batch_size: int = 1, |
|
batch_threshold: float = 0.75, |
|
split_bucket: bool = True, |
|
speed_factor: float = 1.0, |
|
fragment_interval: float = 0.3, |
|
seed: int = -1, |
|
media_type: str = "wav", |
|
streaming_mode: bool = False, |
|
parallel_infer: bool = True, |
|
repetition_penalty: float = 1.35, |
|
sample_steps: int = 32, |
|
super_sampling: bool = False, |
|
): |
|
req = { |
|
"text": text, |
|
"text_lang": text_lang.lower(), |
|
"ref_audio_path": ref_audio_path, |
|
"aux_ref_audio_paths": aux_ref_audio_paths, |
|
"prompt_text": prompt_text, |
|
"prompt_lang": prompt_lang.lower(), |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"text_split_method": text_split_method, |
|
"batch_size": int(batch_size), |
|
"batch_threshold": float(batch_threshold), |
|
"speed_factor": float(speed_factor), |
|
"split_bucket": split_bucket, |
|
"fragment_interval": fragment_interval, |
|
"seed": seed, |
|
"media_type": media_type, |
|
"streaming_mode": streaming_mode, |
|
"parallel_infer": parallel_infer, |
|
"repetition_penalty": float(repetition_penalty), |
|
"sample_steps": int(sample_steps), |
|
"super_sampling": super_sampling, |
|
} |
|
return await tts_handle(req) |
|
|
|
|
|
@APP.post("/tts") |
|
async def tts_post_endpoint(request: TTS_Request): |
|
req = request.dict() |
|
return await tts_handle(req) |
|
|
|
|
|
@APP.get("/set_refer_audio") |
|
async def set_refer_aduio(refer_audio_path: str = None): |
|
try: |
|
tts_pipeline.set_ref_audio(refer_audio_path) |
|
except Exception as e: |
|
return JSONResponse(status_code=400, content={"message": "set refer audio failed", "Exception": str(e)}) |
|
return JSONResponse(status_code=200, content={"message": "success"}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@APP.get("/set_gpt_weights") |
|
async def set_gpt_weights(weights_path: str = None): |
|
try: |
|
if weights_path in ["", None]: |
|
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"}) |
|
tts_pipeline.init_t2s_weights(weights_path) |
|
except Exception as e: |
|
return JSONResponse(status_code=400, content={"message": "change gpt weight failed", "Exception": str(e)}) |
|
|
|
return JSONResponse(status_code=200, content={"message": "success"}) |
|
|
|
|
|
@APP.get("/set_sovits_weights") |
|
async def set_sovits_weights(weights_path: str = None): |
|
try: |
|
if weights_path in ["", None]: |
|
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"}) |
|
tts_pipeline.init_vits_weights(weights_path) |
|
except Exception as e: |
|
return JSONResponse(status_code=400, content={"message": "change sovits weight failed", "Exception": str(e)}) |
|
return JSONResponse(status_code=200, content={"message": "success"}) |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
if host == "None": |
|
host = None |
|
uvicorn.run(app=APP, host=host, port=port, workers=1) |
|
except Exception: |
|
traceback.print_exc() |
|
os.kill(os.getpid(), signal.SIGTERM) |
|
exit(0) |
|
|