File size: 14,143 Bytes
fd355be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# This code is modified from https://github.com/ZFTurbo/
import os
import warnings

import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import yaml
from tqdm import tqdm

warnings.filterwarnings("ignore")


class Roformer_Loader:
    def get_config(self, config_path):
        with open(config_path, "r", encoding="utf-8") as f:
            # use fullloader to load tag !!python/tuple, code can be improved
            config = yaml.load(f, Loader=yaml.FullLoader)
        return config

    def get_default_config(self):
        default_config = None
        if self.model_type == "bs_roformer":
            # Use model_bs_roformer_ep_368_sdr_12.9628.yaml and model_bs_roformer_ep_317_sdr_12.9755.yaml as default configuration files
            # Other BS_Roformer models may not be compatible
            # fmt: off
            default_config = {
                "audio": {"chunk_size": 352800, "sample_rate": 44100},
                "model": {
                    "dim": 512,
                    "depth": 12,
                    "stereo": True,
                    "num_stems": 1,
                    "time_transformer_depth": 1,
                    "freq_transformer_depth": 1,
                    "linear_transformer_depth": 0,
                    "freqs_per_bands": (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 128, 129),
                    "dim_head": 64,
                    "heads": 8,
                    "attn_dropout": 0.1,
                    "ff_dropout": 0.1,
                    "flash_attn": True,
                    "dim_freqs_in": 1025,
                    "stft_n_fft": 2048,
                    "stft_hop_length": 441,
                    "stft_win_length": 2048,
                    "stft_normalized": False,
                    "mask_estimator_depth": 2,
                    "multi_stft_resolution_loss_weight": 1.0,
                    "multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
                    "multi_stft_hop_size": 147,
                    "multi_stft_normalized": False,
                },
                "training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
                "inference": {"batch_size": 2, "num_overlap": 2},
            }
            # fmt: on
        elif self.model_type == "mel_band_roformer":
            # Use model_mel_band_roformer_ep_3005_sdr_11.4360.yaml as default configuration files
            # Other Mel_Band_Roformer models may not be compatible
            default_config = {
                "audio": {"chunk_size": 352800, "sample_rate": 44100},
                "model": {
                    "dim": 384,
                    "depth": 12,
                    "stereo": True,
                    "num_stems": 1,
                    "time_transformer_depth": 1,
                    "freq_transformer_depth": 1,
                    "linear_transformer_depth": 0,
                    "num_bands": 60,
                    "dim_head": 64,
                    "heads": 8,
                    "attn_dropout": 0.1,
                    "ff_dropout": 0.1,
                    "flash_attn": True,
                    "dim_freqs_in": 1025,
                    "sample_rate": 44100,
                    "stft_n_fft": 2048,
                    "stft_hop_length": 441,
                    "stft_win_length": 2048,
                    "stft_normalized": False,
                    "mask_estimator_depth": 2,
                    "multi_stft_resolution_loss_weight": 1.0,
                    "multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
                    "multi_stft_hop_size": 147,
                    "multi_stft_normalized": False,
                },
                "training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
                "inference": {"batch_size": 2, "num_overlap": 2},
            }

        return default_config

    def get_model_from_config(self):
        if self.model_type == "bs_roformer":
            from bs_roformer.bs_roformer import BSRoformer

            model = BSRoformer(**dict(self.config["model"]))
        elif self.model_type == "mel_band_roformer":
            from bs_roformer.mel_band_roformer import MelBandRoformer

            model = MelBandRoformer(**dict(self.config["model"]))
        else:
            print("Error: Unknown model: {}".format(self.model_type))
            model = None
        return model

    def demix_track(self, model, mix, device):
        C = self.config["audio"]["chunk_size"]  # chunk_size
        N = self.config["inference"]["num_overlap"]
        fade_size = C // 10
        step = int(C // N)
        border = C - step
        batch_size = self.config["inference"]["batch_size"]

        length_init = mix.shape[-1]
        progress_bar = tqdm(total=length_init // step + 1, desc="Processing", leave=False)

        # Do pad from the beginning and end to account floating window results better
        if length_init > 2 * border and (border > 0):
            mix = nn.functional.pad(mix, (border, border), mode="reflect")

        # Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
        window_size = C
        fadein = torch.linspace(0, 1, fade_size)
        fadeout = torch.linspace(1, 0, fade_size)
        window_start = torch.ones(window_size)
        window_middle = torch.ones(window_size)
        window_finish = torch.ones(window_size)
        window_start[-fade_size:] *= fadeout  # First audio chunk, no fadein
        window_finish[:fade_size] *= fadein  # Last audio chunk, no fadeout
        window_middle[-fade_size:] *= fadeout
        window_middle[:fade_size] *= fadein

        with torch.amp.autocast("cuda"):
            with torch.inference_mode():
                if self.config["training"]["target_instrument"] is None:
                    req_shape = (len(self.config["training"]["instruments"]),) + tuple(mix.shape)
                else:
                    req_shape = (1,) + tuple(mix.shape)

                result = torch.zeros(req_shape, dtype=torch.float32)
                counter = torch.zeros(req_shape, dtype=torch.float32)
                i = 0
                batch_data = []
                batch_locations = []
                while i < mix.shape[1]:
                    part = mix[:, i : i + C].to(device)
                    length = part.shape[-1]
                    if length < C:
                        if length > C // 2 + 1:
                            part = nn.functional.pad(input=part, pad=(0, C - length), mode="reflect")
                        else:
                            part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode="constant", value=0)
                    if self.is_half:
                        part = part.half()
                    batch_data.append(part)
                    batch_locations.append((i, length))
                    i += step
                    progress_bar.update(1)

                    if len(batch_data) >= batch_size or (i >= mix.shape[1]):
                        arr = torch.stack(batch_data, dim=0)
                        # print(23333333,arr.dtype)
                        x = model(arr)

                        window = window_middle
                        if i - step == 0:  # First audio chunk, no fadein
                            window = window_start
                        elif i >= mix.shape[1]:  # Last audio chunk, no fadeout
                            window = window_finish

                        for j in range(len(batch_locations)):
                            start, l = batch_locations[j]
                            result[..., start : start + l] += x[j][..., :l].cpu() * window[..., :l]
                            counter[..., start : start + l] += window[..., :l]

                        batch_data = []
                        batch_locations = []

                estimated_sources = result / counter
                estimated_sources = estimated_sources.cpu().numpy()
                np.nan_to_num(estimated_sources, copy=False, nan=0.0)

                if length_init > 2 * border and (border > 0):
                    # Remove pad
                    estimated_sources = estimated_sources[..., border:-border]

        progress_bar.close()

        if self.config["training"]["target_instrument"] is None:
            return {k: v for k, v in zip(self.config["training"]["instruments"], estimated_sources)}
        else:
            return {k: v for k, v in zip([self.config["training"]["target_instrument"]], estimated_sources)}

    def run_folder(self, input, vocal_root, others_root, format):
        self.model.eval()
        path = input
        os.makedirs(vocal_root, exist_ok=True)
        os.makedirs(others_root, exist_ok=True)
        file_base_name = os.path.splitext(os.path.basename(path))[0]

        sample_rate = 44100
        if "sample_rate" in self.config["audio"]:
            sample_rate = self.config["audio"]["sample_rate"]

        try:
            mix, sr = librosa.load(path, sr=sample_rate, mono=False)
        except Exception as e:
            print("Can read track: {}".format(path))
            print("Error message: {}".format(str(e)))
            return

        # in case if model only supports mono tracks
        isstereo = self.config["model"].get("stereo", True)
        if not isstereo and len(mix.shape) != 1:
            mix = np.mean(mix, axis=0)  # if more than 2 channels, take mean
            print("Warning: Track has more than 1 channels, but model is mono, taking mean of all channels.")

        mix_orig = mix.copy()

        mixture = torch.tensor(mix, dtype=torch.float32)
        res = self.demix_track(self.model, mixture, self.device)

        if self.config["training"]["target_instrument"] is not None:
            # if target instrument is specified, save target instrument as vocal and other instruments as others
            # other instruments are caculated by subtracting target instrument from mixture
            target_instrument = self.config["training"]["target_instrument"]
            other_instruments = [i for i in self.config["training"]["instruments"] if i != target_instrument]
            other = mix_orig - res[target_instrument]  # caculate other instruments

            path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, target_instrument)
            path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other_instruments[0])
            self.save_audio(path_vocal, res[target_instrument].T, sr, format)
            self.save_audio(path_other, other.T, sr, format)
        else:
            # if target instrument is not specified, save the first instrument as vocal and the rest as others
            vocal_inst = self.config["training"]["instruments"][0]
            path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, vocal_inst)
            self.save_audio(path_vocal, res[vocal_inst].T, sr, format)
            for other in self.config["training"]["instruments"][1:]:  # save other instruments
                path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other)
                self.save_audio(path_other, res[other].T, sr, format)

    def save_audio(self, path, data, sr, format):
        # input path should be endwith '.wav'
        if format in ["wav", "flac"]:
            if format == "flac":
                path = path[:-3] + "flac"
            sf.write(path, data, sr)
        else:
            sf.write(path, data, sr)
            os.system('ffmpeg -i "{}" -vn "{}" -q:a 2 -y'.format(path, path[:-3] + format))
            try:
                os.remove(path)
            except:
                pass

    def __init__(self, model_path, config_path, device, is_half):
        self.device = device
        self.is_half = is_half
        self.model_type = None
        self.config = None

        # get model_type, first try:
        if "bs_roformer" in model_path.lower() or "bsroformer" in model_path.lower():
            self.model_type = "bs_roformer"
        elif "mel_band_roformer" in model_path.lower() or "melbandroformer" in model_path.lower():
            self.model_type = "mel_band_roformer"

        if not os.path.exists(config_path):
            if self.model_type is None:
                # if model_type is still None, raise an error
                raise ValueError(
                    "Error: Unknown model type. If you are using a model without a configuration file, Ensure that your model name includes 'bs_roformer', 'bsroformer', 'mel_band_roformer', or 'melbandroformer'. Otherwise, you can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again."
                )
            self.config = self.get_default_config()
        else:
            # if there is a configuration file
            self.config = self.get_config(config_path)
            if self.model_type is None:
                # if model_type is still None, second try, get model_type from the configuration file
                if "freqs_per_bands" in self.config["model"]:
                    # if freqs_per_bands in config, it's a bs_roformer model
                    self.model_type = "bs_roformer"
                else:
                    # else it's a mel_band_roformer model
                    self.model_type = "mel_band_roformer"

        print("Detected model type: {}".format(self.model_type))
        model = self.get_model_from_config()
        state_dict = torch.load(model_path, map_location="cpu")
        model.load_state_dict(state_dict)

        if is_half == False:
            self.model = model.to(device)
        else:
            self.model = model.half().to(device)

    def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False):
        self.run_folder(input, vocal_root, others_root, format)