File size: 14,143 Bytes
fd355be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# This code is modified from https://github.com/ZFTurbo/
import os
import warnings
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import yaml
from tqdm import tqdm
warnings.filterwarnings("ignore")
class Roformer_Loader:
def get_config(self, config_path):
with open(config_path, "r", encoding="utf-8") as f:
# use fullloader to load tag !!python/tuple, code can be improved
config = yaml.load(f, Loader=yaml.FullLoader)
return config
def get_default_config(self):
default_config = None
if self.model_type == "bs_roformer":
# Use model_bs_roformer_ep_368_sdr_12.9628.yaml and model_bs_roformer_ep_317_sdr_12.9755.yaml as default configuration files
# Other BS_Roformer models may not be compatible
# fmt: off
default_config = {
"audio": {"chunk_size": 352800, "sample_rate": 44100},
"model": {
"dim": 512,
"depth": 12,
"stereo": True,
"num_stems": 1,
"time_transformer_depth": 1,
"freq_transformer_depth": 1,
"linear_transformer_depth": 0,
"freqs_per_bands": (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 128, 129),
"dim_head": 64,
"heads": 8,
"attn_dropout": 0.1,
"ff_dropout": 0.1,
"flash_attn": True,
"dim_freqs_in": 1025,
"stft_n_fft": 2048,
"stft_hop_length": 441,
"stft_win_length": 2048,
"stft_normalized": False,
"mask_estimator_depth": 2,
"multi_stft_resolution_loss_weight": 1.0,
"multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
"multi_stft_hop_size": 147,
"multi_stft_normalized": False,
},
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
"inference": {"batch_size": 2, "num_overlap": 2},
}
# fmt: on
elif self.model_type == "mel_band_roformer":
# Use model_mel_band_roformer_ep_3005_sdr_11.4360.yaml as default configuration files
# Other Mel_Band_Roformer models may not be compatible
default_config = {
"audio": {"chunk_size": 352800, "sample_rate": 44100},
"model": {
"dim": 384,
"depth": 12,
"stereo": True,
"num_stems": 1,
"time_transformer_depth": 1,
"freq_transformer_depth": 1,
"linear_transformer_depth": 0,
"num_bands": 60,
"dim_head": 64,
"heads": 8,
"attn_dropout": 0.1,
"ff_dropout": 0.1,
"flash_attn": True,
"dim_freqs_in": 1025,
"sample_rate": 44100,
"stft_n_fft": 2048,
"stft_hop_length": 441,
"stft_win_length": 2048,
"stft_normalized": False,
"mask_estimator_depth": 2,
"multi_stft_resolution_loss_weight": 1.0,
"multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
"multi_stft_hop_size": 147,
"multi_stft_normalized": False,
},
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
"inference": {"batch_size": 2, "num_overlap": 2},
}
return default_config
def get_model_from_config(self):
if self.model_type == "bs_roformer":
from bs_roformer.bs_roformer import BSRoformer
model = BSRoformer(**dict(self.config["model"]))
elif self.model_type == "mel_band_roformer":
from bs_roformer.mel_band_roformer import MelBandRoformer
model = MelBandRoformer(**dict(self.config["model"]))
else:
print("Error: Unknown model: {}".format(self.model_type))
model = None
return model
def demix_track(self, model, mix, device):
C = self.config["audio"]["chunk_size"] # chunk_size
N = self.config["inference"]["num_overlap"]
fade_size = C // 10
step = int(C // N)
border = C - step
batch_size = self.config["inference"]["batch_size"]
length_init = mix.shape[-1]
progress_bar = tqdm(total=length_init // step + 1, desc="Processing", leave=False)
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode="reflect")
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
window_size = C
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window_start = torch.ones(window_size)
window_middle = torch.ones(window_size)
window_finish = torch.ones(window_size)
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
window_middle[-fade_size:] *= fadeout
window_middle[:fade_size] *= fadein
with torch.amp.autocast("cuda"):
with torch.inference_mode():
if self.config["training"]["target_instrument"] is None:
req_shape = (len(self.config["training"]["instruments"]),) + tuple(mix.shape)
else:
req_shape = (1,) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
part = mix[:, i : i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode="reflect")
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode="constant", value=0)
if self.is_half:
part = part.half()
batch_data.append(part)
batch_locations.append((i, length))
i += step
progress_bar.update(1)
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
# print(23333333,arr.dtype)
x = model(arr)
window = window_middle
if i - step == 0: # First audio chunk, no fadein
window = window_start
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window = window_finish
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start : start + l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start : start + l] += window[..., :l]
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
progress_bar.close()
if self.config["training"]["target_instrument"] is None:
return {k: v for k, v in zip(self.config["training"]["instruments"], estimated_sources)}
else:
return {k: v for k, v in zip([self.config["training"]["target_instrument"]], estimated_sources)}
def run_folder(self, input, vocal_root, others_root, format):
self.model.eval()
path = input
os.makedirs(vocal_root, exist_ok=True)
os.makedirs(others_root, exist_ok=True)
file_base_name = os.path.splitext(os.path.basename(path))[0]
sample_rate = 44100
if "sample_rate" in self.config["audio"]:
sample_rate = self.config["audio"]["sample_rate"]
try:
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
except Exception as e:
print("Can read track: {}".format(path))
print("Error message: {}".format(str(e)))
return
# in case if model only supports mono tracks
isstereo = self.config["model"].get("stereo", True)
if not isstereo and len(mix.shape) != 1:
mix = np.mean(mix, axis=0) # if more than 2 channels, take mean
print("Warning: Track has more than 1 channels, but model is mono, taking mean of all channels.")
mix_orig = mix.copy()
mixture = torch.tensor(mix, dtype=torch.float32)
res = self.demix_track(self.model, mixture, self.device)
if self.config["training"]["target_instrument"] is not None:
# if target instrument is specified, save target instrument as vocal and other instruments as others
# other instruments are caculated by subtracting target instrument from mixture
target_instrument = self.config["training"]["target_instrument"]
other_instruments = [i for i in self.config["training"]["instruments"] if i != target_instrument]
other = mix_orig - res[target_instrument] # caculate other instruments
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, target_instrument)
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other_instruments[0])
self.save_audio(path_vocal, res[target_instrument].T, sr, format)
self.save_audio(path_other, other.T, sr, format)
else:
# if target instrument is not specified, save the first instrument as vocal and the rest as others
vocal_inst = self.config["training"]["instruments"][0]
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, vocal_inst)
self.save_audio(path_vocal, res[vocal_inst].T, sr, format)
for other in self.config["training"]["instruments"][1:]: # save other instruments
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other)
self.save_audio(path_other, res[other].T, sr, format)
def save_audio(self, path, data, sr, format):
# input path should be endwith '.wav'
if format in ["wav", "flac"]:
if format == "flac":
path = path[:-3] + "flac"
sf.write(path, data, sr)
else:
sf.write(path, data, sr)
os.system('ffmpeg -i "{}" -vn "{}" -q:a 2 -y'.format(path, path[:-3] + format))
try:
os.remove(path)
except:
pass
def __init__(self, model_path, config_path, device, is_half):
self.device = device
self.is_half = is_half
self.model_type = None
self.config = None
# get model_type, first try:
if "bs_roformer" in model_path.lower() or "bsroformer" in model_path.lower():
self.model_type = "bs_roformer"
elif "mel_band_roformer" in model_path.lower() or "melbandroformer" in model_path.lower():
self.model_type = "mel_band_roformer"
if not os.path.exists(config_path):
if self.model_type is None:
# if model_type is still None, raise an error
raise ValueError(
"Error: Unknown model type. If you are using a model without a configuration file, Ensure that your model name includes 'bs_roformer', 'bsroformer', 'mel_band_roformer', or 'melbandroformer'. Otherwise, you can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again."
)
self.config = self.get_default_config()
else:
# if there is a configuration file
self.config = self.get_config(config_path)
if self.model_type is None:
# if model_type is still None, second try, get model_type from the configuration file
if "freqs_per_bands" in self.config["model"]:
# if freqs_per_bands in config, it's a bs_roformer model
self.model_type = "bs_roformer"
else:
# else it's a mel_band_roformer model
self.model_type = "mel_band_roformer"
print("Detected model type: {}".format(self.model_type))
model = self.get_model_from_config()
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict)
if is_half == False:
self.model = model.to(device)
else:
self.model = model.half().to(device)
def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False):
self.run_folder(input, vocal_root, others_root, format)
|