|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import pytest |
|
|
|
from einops import rearrange, repeat |
|
|
|
from mamba_ssm.ops.triton.layernorm_gated import layernorm_fn, rms_norm_ref |
|
|
|
|
|
@pytest.mark.parametrize("norm_before_gate", [True, False]) |
|
|
|
@pytest.mark.parametrize("has_group", [False, True]) |
|
|
|
@pytest.mark.parametrize("is_rms_norm", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_z", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_bias", [False, True]) |
|
|
|
|
|
@pytest.mark.parametrize('dtype', [torch.float16]) |
|
|
|
@pytest.mark.parametrize("wtype", [torch.float32]) |
|
@pytest.mark.parametrize('d', [2048, 4096]) |
|
|
|
def test_layer_norm_gated(d, dtype, wtype, has_bias, has_z, is_rms_norm, has_group, norm_before_gate): |
|
if not has_z and not norm_before_gate: |
|
pytest.skip() |
|
if not norm_before_gate and not is_rms_norm: |
|
pytest.skip() |
|
device = 'cuda' |
|
rtol, atol = (1e-5, 1e-5) if dtype == torch.float32 else (1e-2, 8e-3) |
|
group_size = None if not has_group else 64 |
|
|
|
torch.random.manual_seed(0) |
|
batch = 16 |
|
seqlen = 1024 |
|
x = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True) |
|
if has_z: |
|
z = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True) |
|
else: |
|
z = None |
|
weight = torch.randn(d, dtype=wtype, device=device, requires_grad=True) |
|
if has_bias: |
|
bias = torch.randn(d, dtype=wtype, device=device, requires_grad=True) |
|
else: |
|
bias = None |
|
x_ref = x.detach().clone().requires_grad_() |
|
x_pt = x.detach().clone().requires_grad_() |
|
z_ref = z.detach().clone().requires_grad_() if z is not None else None |
|
z_pt = z.detach().clone().requires_grad_() if z is not None else None |
|
weight_ref = weight.detach().clone().requires_grad_() |
|
weight_pt = weight.detach().clone().requires_grad_() |
|
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None |
|
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None |
|
out = layernorm_fn(x, weight, bias, z=z, eps=1e-5, group_size=group_size, norm_before_gate=norm_before_gate, |
|
is_rms_norm=is_rms_norm) |
|
if not is_rms_norm: |
|
if not has_group: |
|
out_ref = F.layer_norm(x_ref.float(), (d,), weight=weight_ref.float(), bias=bias_ref.float() if bias_ref is not None else None, eps=1e-5) |
|
out_pt = F.layer_norm(x_pt.to(wtype), (d,), weight=weight_pt, bias=bias_pt, eps=1e-5) |
|
else: |
|
out_ref = rearrange(F.layer_norm(rearrange(x_ref, "... (g d) -> ... g d", d=group_size).float(), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_ref.float() |
|
if has_bias: |
|
out_ref = out_ref + bias_ref.float() |
|
out_pt = rearrange(F.layer_norm(rearrange(x_pt, "... (g d) -> ... g d", d=group_size), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_pt |
|
if has_bias: |
|
out_pt = out_pt + bias_pt |
|
if has_z and norm_before_gate: |
|
out_ref = out_ref * F.silu(z_ref.float()) |
|
out_pt = out_pt * F.silu(z_pt) |
|
else: |
|
out_ref = rms_norm_ref(x_ref, weight_ref, bias_ref, z=z_ref, eps=1e-5, group_size=group_size, |
|
norm_before_gate=norm_before_gate) |
|
out_pt = rms_norm_ref(x_pt, weight_pt, bias_pt, z=z_pt, eps=1e-5, group_size=group_size, |
|
norm_before_gate=norm_before_gate, upcast=False) |
|
print(f"Max diff = {(out - out_ref).abs().max().item()}") |
|
print(f"Max diff Pytorch = {(out_pt - out_ref).abs().max().item()}") |
|
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + atol |
|
|
|
g = torch.randn_like(out) |
|
out.backward(g) |
|
out_ref.backward(g) |
|
out_pt.backward(g) |
|
print(f"Max dx diff = {(x.grad - x_ref.grad).abs().max().item()}") |
|
print(f"Max dx diff Pytorch = {(x_pt.grad - x_ref.grad).abs().max().item()}") |
|
if has_z: |
|
print(f"Max dz diff = {(z.grad - z_ref.grad).abs().max().item()}") |
|
print(f"Max dz diff Pytorch = {(z_pt.grad - z_ref.grad).abs().max().item()}") |
|
print(f"Max dw diff = {(weight.grad - weight_ref.grad).abs().max().item()}") |
|
print(f"Max dw diff Pytorch = {(weight_pt.grad - weight_ref.grad).abs().max().item()}") |
|
if has_bias: |
|
print(f"Max db diff = {(bias.grad - bias_ref.grad).abs().max().item()}") |
|
print(f"Max db diff Pytorch = {(bias_pt.grad - bias_ref.grad).abs().max().item()}") |
|
assert (x.grad - x_ref.grad).abs().max().item() <= 2 * (x_pt.grad - x_ref.grad).abs().max().item() + atol |
|
if has_z: |
|
assert (z.grad - z_ref.grad).abs().max().item() <= 2 * (z_pt.grad - z_ref.grad).abs().max().item() + atol |
|
assert (weight.grad - weight_ref.grad).abs().max().item() <= 2 * (weight_pt.grad - weight_ref.grad).abs().max().item() + atol |
|
if has_bias: |
|
assert (bias.grad - bias_ref.grad).abs().max().item() <= 2 * (bias_pt.grad - bias_ref.grad).abs().max().item() + atol |
|
|