|
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include <c10/util/BFloat16.h> |
|
#include <c10/util/Half.h> |
|
#include <c10/cuda/CUDAException.h> |
|
|
|
#ifndef USE_ROCM |
|
#include <cub/block/block_load.cuh> |
|
#include <cub/block/block_store.cuh> |
|
#include <cub/block/block_scan.cuh> |
|
#else |
|
#include <hipcub/hipcub.hpp> |
|
namespace cub = hipcub; |
|
#endif |
|
|
|
#include "selective_scan.h" |
|
#include "selective_scan_common.h" |
|
#include "static_switch.h" |
|
|
|
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_, |
|
bool kIsVariableB_, bool kIsVariableC_, |
|
bool kHasZ_, typename input_t_, typename weight_t_> |
|
struct Selective_Scan_fwd_kernel_traits { |
|
static_assert(kNItems_ % 4 == 0); |
|
using input_t = input_t_; |
|
using weight_t = weight_t_; |
|
static constexpr int kNThreads = kNThreads_; |
|
|
|
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3; |
|
static constexpr int kNItems = kNItems_; |
|
static constexpr int kNRows = kNRows_; |
|
static constexpr int kNBytes = sizeof(input_t); |
|
static_assert(kNBytes == 2 || kNBytes == 4); |
|
static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems); |
|
static_assert(kNItems % kNElts == 0); |
|
static constexpr int kNLoads = kNItems / kNElts; |
|
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>; |
|
static constexpr bool kIsEvenLen = kIsEvenLen_; |
|
static constexpr bool kIsVariableB = kIsVariableB_; |
|
static constexpr bool kIsVariableC = kIsVariableC_; |
|
static constexpr bool kHasZ = kHasZ_; |
|
|
|
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1; |
|
|
|
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; |
|
using scan_t = std::conditional_t<!kIsComplex, float2, float4>; |
|
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>; |
|
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, |
|
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>; |
|
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>; |
|
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, |
|
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>; |
|
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>; |
|
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, |
|
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>; |
|
|
|
|
|
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>; |
|
static constexpr int kSmemIOSize = custom_max({sizeof(typename BlockLoadT::TempStorage), |
|
sizeof(typename BlockLoadVecT::TempStorage), |
|
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage), |
|
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage), |
|
sizeof(typename BlockStoreT::TempStorage), |
|
sizeof(typename BlockStoreVecT::TempStorage)}); |
|
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage); |
|
}; |
|
|
|
template<typename Ktraits> |
|
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks) |
|
void selective_scan_fwd_kernel(SSMParamsBase params) { |
|
constexpr bool kIsComplex = Ktraits::kIsComplex; |
|
constexpr bool kIsVariableB = Ktraits::kIsVariableB; |
|
constexpr bool kIsVariableC = Ktraits::kIsVariableC; |
|
constexpr bool kHasZ = Ktraits::kHasZ; |
|
constexpr int kNThreads = Ktraits::kNThreads; |
|
constexpr int kNItems = Ktraits::kNItems; |
|
constexpr int kNRows = Ktraits::kNRows; |
|
constexpr bool kDirectIO = Ktraits::kDirectIO; |
|
using input_t = typename Ktraits::input_t; |
|
using weight_t = typename Ktraits::weight_t; |
|
using scan_t = typename Ktraits::scan_t; |
|
|
|
|
|
extern __shared__ char smem_[]; |
|
|
|
|
|
|
|
|
|
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_); |
|
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_); |
|
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage)); |
|
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_); |
|
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize); |
|
|
|
|
|
scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize); |
|
|
|
const int batch_id = blockIdx.x; |
|
const int dim_id = blockIdx.y; |
|
const int group_id = dim_id / (params.dim_ngroups_ratio); |
|
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride |
|
+ dim_id * kNRows * params.u_d_stride; |
|
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride |
|
+ dim_id * kNRows * params.delta_d_stride; |
|
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride; |
|
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride; |
|
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride; |
|
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride; |
|
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride; |
|
scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate; |
|
|
|
float D_val[kNRows] = {0}; |
|
if (params.D_ptr != nullptr) { |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r]; |
|
} |
|
} |
|
float delta_bias[kNRows] = {0}; |
|
if (params.delta_bias_ptr != nullptr) { |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r]; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
constexpr int kChunkSize = kNThreads * kNItems; |
|
for (int chunk = 0; chunk < params.n_chunks; ++chunk) { |
|
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems]; |
|
__syncthreads(); |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
if constexpr (!kDirectIO) { |
|
if (r > 0) { __syncthreads(); } |
|
} |
|
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize); |
|
if constexpr (!kDirectIO) { __syncthreads(); } |
|
load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize); |
|
} |
|
u += kChunkSize; |
|
delta += kChunkSize; |
|
|
|
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems]; |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
#pragma unroll |
|
for (int i = 0; i < kNItems; ++i) { |
|
float u_val = float(u_vals[r][i]); |
|
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r]; |
|
if (params.delta_softplus) { |
|
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i]; |
|
} |
|
delta_u_vals[r][i] = delta_vals[r][i] * u_val; |
|
out_vals[r][i] = D_val[r] * u_val; |
|
} |
|
} |
|
|
|
__syncthreads(); |
|
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) { |
|
weight_t A_val[kNRows]; |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride]; |
|
|
|
constexpr float kLog2e = M_LOG2E; |
|
if constexpr (!kIsComplex) { |
|
A_val[r] *= kLog2e; |
|
} else { |
|
A_val[r].real_ *= kLog2e; |
|
} |
|
} |
|
|
|
|
|
|
|
weight_t BC_val[kNRows]; |
|
weight_t B_vals[kNItems], C_vals[kNItems]; |
|
if constexpr (kIsVariableB) { |
|
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals, |
|
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2)); |
|
if constexpr (!kIsVariableC) { |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride]; |
|
} |
|
} |
|
} |
|
if constexpr (kIsVariableC) { |
|
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1; |
|
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals, |
|
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2)); |
|
if constexpr (!kIsVariableB) { |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride]; |
|
} |
|
} |
|
} |
|
if constexpr (!kIsVariableB && !kIsVariableC) { |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride]; |
|
} |
|
} |
|
|
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
if (r > 0) { __syncthreads(); } |
|
scan_t thread_data[kNItems]; |
|
#pragma unroll |
|
for (int i = 0; i < kNItems; ++i) { |
|
if constexpr (!kIsComplex) { |
|
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]), |
|
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]); |
|
if constexpr (!Ktraits::kIsEvenLen) { |
|
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) { |
|
thread_data[i] = make_float2(1.f, 0.f); |
|
} |
|
} |
|
} else { |
|
|
|
complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]); |
|
weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]; |
|
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_); |
|
if constexpr (!Ktraits::kIsEvenLen) { |
|
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) { |
|
thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f); |
|
} |
|
} |
|
} |
|
} |
|
|
|
scan_t running_prefix; |
|
if constexpr (!kIsComplex) { |
|
|
|
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f); |
|
|
|
} else { |
|
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f); |
|
|
|
} |
|
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix); |
|
typename Ktraits::BlockScanT(smem_scan).InclusiveScan( |
|
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op |
|
); |
|
|
|
|
|
if (threadIdx.x == 0) { |
|
smem_running_prefix[state_idx] = prefix_op.running_prefix; |
|
x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix; |
|
} |
|
#pragma unroll |
|
for (int i = 0; i < kNItems; ++i) { |
|
const weight_t C_val = !kIsVariableC |
|
? BC_val[r] |
|
: (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]); |
|
if constexpr (!kIsComplex) { |
|
out_vals[r][i] += thread_data[i].y * C_val; |
|
} else { |
|
out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride |
|
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize; |
|
__syncthreads(); |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
if constexpr (!kDirectIO) { |
|
if (r > 0) { __syncthreads(); } |
|
} |
|
store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize); |
|
} |
|
|
|
if constexpr (kHasZ) { |
|
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride |
|
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize; |
|
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride |
|
+ dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize; |
|
#pragma unroll |
|
for (int r = 0; r < kNRows; ++r) { |
|
input_t z_vals[kNItems]; |
|
__syncthreads(); |
|
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize); |
|
#pragma unroll |
|
for (int i = 0; i < kNItems; ++i) { |
|
float z_val = z_vals[i]; |
|
out_vals[r][i] *= z_val / (1 + expf(-z_val)); |
|
} |
|
__syncthreads(); |
|
store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize); |
|
} |
|
} |
|
|
|
Bvar += kChunkSize * (!kIsComplex ? 1 : 2); |
|
Cvar += kChunkSize * (!kIsComplex ? 1 : 2); |
|
} |
|
} |
|
|
|
template<int kNThreads, int kNItems, typename input_t, typename weight_t> |
|
void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) { |
|
|
|
|
|
constexpr int kNRows = 1; |
|
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] { |
|
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] { |
|
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] { |
|
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] { |
|
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>; |
|
|
|
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t); |
|
dim3 grid(params.batch, params.dim / kNRows); |
|
|
|
|
|
|
|
|
|
|
|
auto kernel = &selective_scan_fwd_kernel<Ktraits>; |
|
|
|
|
|
if (kSmemSize >= 48 * 1024) { |
|
#ifndef USE_ROCM |
|
C10_CUDA_CHECK(cudaFuncSetAttribute( |
|
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); |
|
#else |
|
C10_CUDA_CHECK(cudaFuncSetAttribute( |
|
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); |
|
std::cerr << "Warning (selective_scan_fwd_kernel): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl; |
|
#endif |
|
} |
|
|
|
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); |
|
C10_CUDA_KERNEL_LAUNCH_CHECK(); |
|
}); |
|
}); |
|
}); |
|
}); |
|
} |
|
|
|
template<typename input_t, typename weight_t> |
|
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream) { |
|
|
|
#ifndef USE_ROCM |
|
if (params.seqlen <= 128) { |
|
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream); |
|
} else if (params.seqlen <= 256) { |
|
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream); |
|
} else if (params.seqlen <= 512) { |
|
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream); |
|
} else if (params.seqlen <= 1024) { |
|
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream); |
|
} else { |
|
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream); |
|
} |
|
#else |
|
if (params.seqlen <= 256) { |
|
selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream); |
|
} else if (params.seqlen <= 512) { |
|
selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream); |
|
} else if (params.seqlen <= 1024) { |
|
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream); |
|
} else { |
|
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream); |
|
} |
|
#endif |
|
} |
|
|