kernel
File size: 7,551 Bytes
a7165c8
 
 
 
ab4cc6a
 
 
 
 
a7165c8
 
 
 
 
 
 
 
ab4cc6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#pragma once

#include <torch/torch.h>

std::vector<torch::Tensor>
mha_fwd(const torch::Tensor &q,                               // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
        const torch::Tensor &k,                               // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
        const torch::Tensor &v,                               // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8)
        const c10::optional<torch::Tensor> &out_,          // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8)
        const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
        const double p_dropout,
        const double softmax_scale,
        bool is_causal,
        const int64_t window_size_left,
        const int64_t window_size_right,
        const double softcap,
        const bool return_softmax,
        const c10::optional<at::Generator> gen_);

std::vector<torch::Tensor>
mha_varlen_fwd(
        const torch::Tensor &q,                            // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
        const torch::Tensor &k,                            // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
        const torch::Tensor &v,                            // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
        const c10::optional<torch::Tensor> &out_,          // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const torch::Tensor &cu_seqlens_q,                 // b+1
        const torch::Tensor &cu_seqlens_k,                 // b+1
        const c10::optional<torch::Tensor> &seqused_k_,    // b. If given, only this many elements of each batch element's keys are used.
        const c10::optional<torch::Tensor> &leftpad_k_,    // batch_size
        const c10::optional<torch::Tensor> &block_table_,  // batch_size x max_num_blocks_per_seq
        const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
        const int64_t max_seqlen_q,
        const int64_t max_seqlen_k,
        const double p_dropout,
        const double softmax_scale,
        const bool zero_tensors,
        const bool is_causal,
        const int64_t window_size_left,
        const int64_t window_size_right,
        const double softcap,
        const bool return_softmax,
        const c10::optional<at::Generator> gen_);


std::vector<torch::Tensor>
mha_bwd(const torch::Tensor &dout,                         // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
        const torch::Tensor &q,                            // batch_size x seqlen_q x num_heads x head_size
        const torch::Tensor &k,                            // batch_size x seqlen_k x num_heads_k x head_size
        const torch::Tensor &v,                            // batch_size x seqlen_k x num_heads_k x head_size
        const torch::Tensor &out,                          // batch_size x seqlen_q x num_heads x head_size
        const torch::Tensor &softmax_lse,                  // b x h x seqlen_q
        const c10::optional<torch::Tensor> &dq_,           // batch_size x seqlen_q x num_heads x head_size
        const c10::optional<torch::Tensor> &dk_,           // batch_size x seqlen_k x num_heads_k x head_size
        const c10::optional<torch::Tensor> &dv_,           // batch_size x seqlen_k x num_heads_k x head_size
        const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
        const double p_dropout,                            // probability to drop
        const double softmax_scale,
        const bool is_causal,
        const int64_t window_size_left,
        const int64_t window_size_right,
        const double softcap,
        const bool deterministic,
        c10::optional<at::Generator> gen_,
        const c10::optional<torch::Tensor> &rng_state);


std::vector<torch::Tensor>
mha_varlen_bwd(
        const torch::Tensor &dout,                         // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
        const torch::Tensor &q,                            // batch_size x seqlen_q x num_heads x head_size
        const torch::Tensor &k,                            // batch_size x seqlen_k x num_heads_k x head_size
        const torch::Tensor &v,                            // batch_size x seqlen_k x num_heads_k x head_size
        const torch::Tensor &out,                          // batch_size x seqlen_q x num_heads x head_size
        const torch::Tensor &softmax_lse,                  // b x h x seqlen_q
        const c10::optional<torch::Tensor> &dq_,           // batch_size x seqlen_q x num_heads x head_size
        const c10::optional<torch::Tensor> &dk_,           // batch_size x seqlen_k x num_heads_k x head_size
        const c10::optional<torch::Tensor> &dv_,           // batch_size x seqlen_k x num_heads_k x head_size
        const torch::Tensor &cu_seqlens_q,                 // batch_size + 1
        const torch::Tensor &cu_seqlens_k,                 // batch_size + 1
        const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
        const int64_t max_seqlen_q,
        const int64_t max_seqlen_k,
        const double p_dropout,
        const double softmax_scale,
        const bool zero_tensors,
        const bool is_causal,
        const int64_t window_size_left,
        const int64_t window_size_right,
        const double softcap,
        const bool deterministic,
        c10::optional<at::Generator> gen_,
        const c10::optional<torch::Tensor> &rng_state);

std::vector<torch::Tensor>
mha_fwd_kvcache(
        const torch::Tensor &q,                                // batch_size x seqlen_q x num_heads x head_size
        const torch::Tensor &kcache,                           // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
        const torch::Tensor &vcache,                           // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
        const c10::optional<torch::Tensor> &k_,                // batch_size x seqlen_knew x num_heads_k x head_size
        const c10::optional<torch::Tensor> &v_,                // batch_size x seqlen_knew x num_heads_k x head_size
        const c10::optional<torch::Tensor> &seqlens_k_,        // batch_size
        const c10::optional<torch::Tensor> &rotary_cos_,       // seqlen_ro x (rotary_dim / 2)
        const c10::optional<torch::Tensor> &rotary_sin_,       // seqlen_ro x (rotary_dim / 2)
        const c10::optional<torch::Tensor> &cache_batch_idx_,  // indices to index into the KV cache
        const c10::optional<torch::Tensor> &leftpad_k_,        // batch_size
        const c10::optional<torch::Tensor> &block_table_,      // batch_size x max_num_blocks_per_seq
        const c10::optional<torch::Tensor> &alibi_slopes_,     // num_heads or batch_size x num_heads
        const c10::optional<torch::Tensor> &out_,              // batch_size x seqlen_q x num_heads x head_size
        const double softmax_scale,
        bool is_causal,
        const int64_t window_size_left,
        const int64_t window_size_right,
        const double softcap,
        bool is_rotary_interleaved,
        const int64_t num_splits);