kernel
File size: 49,015 Bytes
a7165c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/***************************************************************************************************
 * Copyright (c) 2024, Tri Dao.
 ******************************************************************************/

#pragma once

#include "namespace_config.h"
#include <cute/tensor.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "mask.h"
#include "dropout.h"

#include "alibi.h"

namespace FLASH_NAMESPACE {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
    constexpr int TileShape_K = decltype(tiled_mma.template tile_size_mnk<2>())::value;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    // This gives the correct layout, idk why.
    // auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
    //                           Stride<Stride<_1, _64>, _8> >{},
    // auto t = make_tile(Layout<Shape<_8, _2, _2>,
    //                           Stride<_1, _64, _8> >{},
    auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{},       // (1, 64, 8) or (1, 32, 8)
                       make_layout(Int<TileShape_K>{}));
    // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    constexpr int TileShape_M = decltype(tiled_mma.template tile_size_mnk<0>())::value;
    constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    auto t = make_tile(make_layout(Int<TileShape_M>{}),
                       Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{});       // (1, 64, 8) or (1, 32, 8)
    // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int MMA_N_SdP = kBlockN / decltype(typename Kernel_traits::TiledMmaSdP{}.template tile_size_mnk<1>())::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
    constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;

    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
    if (Is_local) {
        m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
    }

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
        // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
        + (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
    const index_t row_offset_lse = (params.unpadded_lse? bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb): (bidb * params.h + bidh) * params.seqlen_q) + (m_block_max - 1) * kBlockM;
    // Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
    const index_t row_offset_dpsum = (params.unpadded_lse? bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb: (bidb * params.h + bidh) * params.seqlen_q_rounded) + (m_block_max - 1) * kBlockM;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.o_row_stride, _1{}));
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  make_stride(params.h * params.d_rounded, _1{}));
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    // Double buffer for sQ
    Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
                             typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    // sP and sdQ share the same memory so be careful
    Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});

    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
    using GmemTiledCopydO = std::conditional_t<
        Is_first,
        typename Kernel_traits::GmemTiledCopydO,
        typename Kernel_traits::GmemTiledCopyQKV
    >;
    GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
    using GmemLayoutAtomdQaccum = std::conditional_t<
        !Seq_parallel,
        typename Kernel_traits::GmemTiledCopydQaccum,
        typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
    >;
    GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
    // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
    // __syncthreads();
    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
    //     printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
    // }

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
    // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
    //     printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
    // }
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    //
    // PREDICATES
    //

    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We'll advance gdQ and gdQaccum before the 1st read/write.
    tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
    tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;

    int m_block = m_block_max - 1;
    int m_block_min = (!Is_causal && !Is_local)
        ? 0
        : std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
    // If not local, we're guaranteed that m_block_min <= m_block:
    // We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
    // n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
    // So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
    // Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
    // So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
    // We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
    // However, if local, then this possible to have some blocks of K & V not attending to any query.
    // We might need to exit early and write 0 to dK and dV for those blocks.
    // Otherwise we get wrong result for the case where we don't enter the for loop.
    // And we might read OOB elements from gQ and gdO.
    // This also covers the case where actual_seqlen_q == 0
    if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
        const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
          + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
        const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
          + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
        Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dk_row_stride, _1{}));
        Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dv_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
        auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
        Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
        Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
        clear(tdKrdK);
        clear(tdVrdV);
        Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        return;
    }

    if (Double_buffer && m_block % 2 == 1) {  // Double buffer for sQ
        tQsQ.data() = tQsQ.data() + size(sQ);
        tSsQ.data() = tSsQ.data() + size(sQ);
        tdKsQt.data() = tdKsQt.data() + size(sQ);
    }

    if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }

    if (Kernel_traits::Is_V_in_regs) {
        // Clear the smem tiles to account for predicated off loads
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        FLASH_NAMESPACE::cp_async_fence();
    }

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    if (!Is_first) {
        // Clear the smem tiles to account for predicated off loads
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
            gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
    } else {
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
            gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
            gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
    }
    FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
        lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
    }
    // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
    // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
    // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
    // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

    // Tensor tKrK = make_fragment_like(tKsK);
    // // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
    // cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
    // // if (cute::thread(1, 0)) { print(tKrK); }

    FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
    if (!Kernel_traits::Is_V_in_regs) {
        FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
    }
    FLASH_NAMESPACE::cp_async_fence();

    // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
    if (Is_first) {
        cute::copy(tdOrdO, tdOsdO);
        dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
                                                    Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    }

    if (Kernel_traits::Is_V_in_regs) {
        cute::cp_async_wait<1>();
        __syncthreads();
        Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
        CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view));            // M
        cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
    }

    FLASH_NAMESPACE::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);

    clear(acc_dv);
    clear(acc_dk);

    const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
    FLASH_NAMESPACE::Alibi<Is_causal> alibi(alibi_slope, binfo.actual_seqlen_k, binfo.actual_seqlen_q);

    for (; m_block >= m_block_min; --m_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        clear(acc_s);
        cute::cp_async_wait<0>();
        __syncthreads();

        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }

        // if (cute::thread0()) { print(sK); }
        // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
        // #pragma unroll
        // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
        //     cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
        // }
        // if (cute::thread0()) { print(tSrK); }
        FLASH_NAMESPACE::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);

        if constexpr (Is_softcap) {
            FLASH_NAMESPACE::apply_softcap(acc_s, params.softcap);
        }

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread(32, 0)) { print(scores); }

        // Softcapping - calculating dTanh and scaling dS later with it
        [[maybe_unused]] Tensor dtanh = make_tensor_like(scores);
        if constexpr (Is_softcap) {
            FLASH_NAMESPACE::calculate_dtanh(scores, dtanh, params.softcap);
        }

        // Alibi
        if (Has_alibi) {
            alibi.apply_alibi(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                              m_block * kBlockM + get<0>(taccScS_row(0)), AtomLayoutMS * 16);
        }

        // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
        // actual_seqlen_k, because acc_s would be some finite value for those indices.
        // In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
        // so the result would still be correct.
        // However, it's possible that the values in acc_s are so large that they overflow
        // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
        // So we need to mask out the elements beyond actual_seqlen_k.
        if (!Is_causal && !Is_local) {
            if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
                FLASH_NAMESPACE::apply_mask(scores, binfo.actual_seqlen_k,
                                  n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
            }
        } else if (Is_causal) {
            // Putting this causal masking right after acc_s is *much* slower for some reason.
            // TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
            // (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
            // But we still want to mask out elements beyond actual_seqlen_k.
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
                FLASH_NAMESPACE::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                         binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                         binfo.actual_seqlen_q,
                                         // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                         AtomLayoutMS * 16);
            }
        } else if (Is_local) {
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
                || (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
                FLASH_NAMESPACE::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                        binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                        binfo.actual_seqlen_q, AtomLayoutMS * 16,
                                        params.window_size_left, params.window_size_right);
            }

        }

        // if (cute::thread(32, 0)) { print(scores); }
        // Compute the exponential value.
        FLASH_NAMESPACE::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if constexpr (Is_dropout) {
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                acc_s, block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? FLASH_NAMESPACE::convert_type<Element>(acc_s)
            : FLASH_NAMESPACE::convert_type_relu<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), FLASH_NAMESPACE::convert_layout_acc_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
        // if (cute::thread0()) { print(tPaP); }
        // __syncthreads();
        // if (cute::thread0()) { print(sP); }

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_dp.layout()));
        // #pragma unroll
        // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
        //     #pragma unroll
        //     for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
        //         acc_dp_reshaped(mi, ni) = -dP_sum(mi);
        //     }
        // }

        // if (cute::thread0()) { print(dP_sum); }

        FLASH_NAMESPACE::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
            acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
            smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
        );

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                float scaled_ds = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
                if constexpr (Is_softcap) { scaled_ds *= dtanh(mi, ni); }
                dS(mi, ni) = scaled_ds;
            }
        }
        // if (cute::thread0()) { print(dS); }

        Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
        if (Is_first || Seq_parallel) {
            clear(acc_dq);
        } else {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
        }

        if (Double_buffer && m_block > m_block_min) {
            // Double buffer for sQ
            const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
            tQsQ.data() = tQsQ.data() + sQ_offset;
            tSsQ.data() = tSsQ.data() + sQ_offset;
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
            FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
            FLASH_NAMESPACE::cp_async_fence();
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = FLASH_NAMESPACE::convert_type<Element>(dS_reshaped);
        // if (cute::thread0()) { print(tPrP); }
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
        __syncthreads();

        // Layout p_l = tPrP.layout();
        // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
        // FLASH_NAMESPACE::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
        // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
        // FLASH_NAMESPACE::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
        FLASH_NAMESPACE::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
        // if (cute::thread0()) { print(acc_dv); }

        __syncthreads(); // Need syncthreads since we're writing to the same sdO location

        if (m_block > m_block_min) {
            // Advance gdO
            tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
            if (Is_first) {
                tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
                FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
                FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
            } else {
                FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
                FLASH_NAMESPACE::cp_async_fence();
            }
        }

        FLASH_NAMESPACE::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
        // if (cute::thread0()) { print(acc_dq); }

        if (m_block > m_block_min) {
            gLSE.data() = gLSE.data() + (-int(kBlockM));
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
            gdPsum.data() = gdPsum.data() + (-int(kBlockM));
        }

        if (!Is_last) {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            if (!Seq_parallel) {
                cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
            } else {
                // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
                CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
                #pragma unroll
                for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
            }
        } else {
            #pragma unroll
            for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
            // Convert acc_dq from fp32 to fp16
            Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
            Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
        }

        FLASH_NAMESPACE::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        // if (cute::thread0()) { print(acc_dk); }
        if (Double_buffer) {  // Double buffer for sQ
            tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
        }
        if (!Double_buffer && m_block > m_block_min) {
            __syncthreads();
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
            FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
            FLASH_NAMESPACE::cp_async_fence();
        }

        if (Is_first && m_block > m_block_min) {
            cute::copy(tdOrdO, tdOsdO);
            dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
                                                        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
        }

        if (Is_last) {
            __syncthreads();
            Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
            cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
            tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
            Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
            #pragma unroll
            for (int m = 0; m < size<1>(tdQgdQ); ++m) {
                if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
                    cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
                }
            }
        }

    }

    // Epilogue

    if (Is_dropout) {
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }

    // Convert acc_dv from fp32 to fp16
    Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
    Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);

    Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{});  // (SMEM_N, SMEM_K)
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    // Partition sdV and sdK to match the accumulator partitioning
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);   // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);    // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // We need syncthreads here since we're writing to the same location as sK and sV.
    // Without syncthreads, some thread might modify the location of sK while another thread
    // is reading it for dQ gemm, leading to a race condition.
    // If Is_last, there's already a __syncthreads() at the end of the loop.
    if (!Is_last) { __syncthreads(); }

    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
       + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
       + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));

    typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);

    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
    Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
    FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );

}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.x;
    // const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.y;
    // const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    if (n_block_max == 1) {
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
    } else {
        // Iterating backward from n_block_max - 1 to 0 might save 1 register
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
        for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
            compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
        }
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, typename Params>
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
    for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash