File size: 49,015 Bytes
a7165c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
/***************************************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include "namespace_config.h"
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "mask.h"
#include "dropout.h"
#include "alibi.h"
namespace FLASH_NAMESPACE {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int MMA_N,
class... Args,
class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
TiledMMA const& tiled_mma) {
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
constexpr int TileShape_K = decltype(tiled_mma.template tile_size_mnk<2>())::value;
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
// Divide by 2 because right now we always use 2 for the ValLayout
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
// This gives the correct layout, idk why.
// auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
// Stride<Stride<_1, _64>, _8> >{},
// auto t = make_tile(Layout<Shape<_8, _2, _2>,
// Stride<_1, _64, _8> >{},
auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
Stride<_1, Int<MMAStride_N>, _8> >{}, // (1, 64, 8) or (1, 32, 8)
make_layout(Int<TileShape_K>{}));
// if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n"); }
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int MMA_N,
class... Args,
class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
TiledMMA const& tiled_mma) {
constexpr int TileShape_M = decltype(tiled_mma.template tile_size_mnk<0>())::value;
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
// Divide by 2 because right now we always use 2 for the ValLayout
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
auto t = make_tile(make_layout(Int<TileShape_M>{}),
Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
Stride<_1, Int<MMAStride_N>, _8> >{}); // (1, 64, 8) or (1, 32, 8)
// if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n"); }
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
inline __device__ void compute_dq_dk_dv_1colblock(const Params ¶ms, const int bidb, const int bidh, const int n_block) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int MMA_N_SdP = kBlockN / decltype(typename Kernel_traits::TiledMmaSdP{}.template tile_size_mnk<1>())::value;
constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
if (Is_local) {
m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
}
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
+ n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
+ n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
+ (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
const index_t row_offset_lse = (params.unpadded_lse? bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb): (bidb * params.h + bidh) * params.seqlen_q) + (m_block_max - 1) * kBlockM;
// Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
const index_t row_offset_dpsum = (params.unpadded_lse? bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb: (bidb * params.h + bidh) * params.seqlen_q_rounded) + (m_block_max - 1) * kBlockM;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.v_row_stride, _1{}));
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.do_row_stride, _1{}));
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.dq_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutQdO{});
Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
// Double buffer for sQ
Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
typename Kernel_traits::SmemLayoutPdS{});
Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
// sP and sdQ share the same memory so be careful
Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
using GmemTiledCopydO = std::conditional_t<
Is_first,
typename Kernel_traits::GmemTiledCopydO,
typename Kernel_traits::GmemTiledCopyQKV
>;
GmemTiledCopydO gmem_tiled_copy_dO;
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
using GmemLayoutAtomdQaccum = std::conditional_t<
!Seq_parallel,
typename Kernel_traits::GmemTiledCopydQaccum,
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
>;
GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
// if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
// __syncthreads();
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
// printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
// }
typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ); // (MMA,MMA_N,MMA_K)
Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO); // (MMA,MMA_N,MMA_K)
Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV); // (MMA,MMA_N,MMA_K)
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle); // (MMA, MMA_K, MMA_N)
Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle); // (MMA, MMA_N, MMA_N)
Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS); // (MMA, MMA_N, MMA_N)
Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle); // (MMA, MMA_K, MMA_N)
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
//
// Copy Atom retiling
//
auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);
// auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
// if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
// if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);
// Partition sP and sdS to match the accumulator partitioning
// This has to be tiled_mma_sdp, not tiled_mma_dkv
// auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tensor tPsP = smem_thr_copy_PdS.partition_D(sP); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
// if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
// if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
// printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
// }
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS); // ((Atom,AtomNum),PIPE_M,PIPE_N)
auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);
auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);
auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);
auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
//
// PREDICATES
//
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);
// Allocate predicate tensors for k
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
// Set predicates for k bounds
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
}
// Prologue
// We'll advance gdQ and gdQaccum before the 1st read/write.
tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
int m_block = m_block_max - 1;
int m_block_min = (!Is_causal && !Is_local)
? 0
: std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
// If not local, we're guaranteed that m_block_min <= m_block:
// We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
// n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
// So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
// Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
// So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
// We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
// However, if local, then this possible to have some blocks of K & V not attending to any query.
// We might need to exit early and write 0 to dK and dV for those blocks.
// Otherwise we get wrong result for the case where we don't enter the for loop.
// And we might read OOB elements from gQ and gdO.
// This also covers the case where actual_seqlen_q == 0
if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
clear(tdKrdK);
clear(tdVrdV);
Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
return;
}
if (Double_buffer && m_block % 2 == 1) { // Double buffer for sQ
tQsQ.data() = tQsQ.data() + size(sQ);
tSsQ.data() = tSsQ.data() + size(sQ);
tdKsQt.data() = tdKsQt.data() + size(sQ);
}
if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }
if (Kernel_traits::Is_V_in_regs) {
// Clear the smem tiles to account for predicated off loads
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
FLASH_NAMESPACE::cp_async_fence();
}
Tensor tdOrdO = make_fragment_like(tdOgdO);
Tensor tdOrO = make_fragment_like(tdOgO);
if (!Is_first) {
// Clear the smem tiles to account for predicated off loads
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
} else {
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
}
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
Tensor taccScS = thr_mma_sdp.partition_C(caccS); // (MMA,MMA_N,MMA_N)
static_assert(decltype(size<0>(taccScS))::value == 4);
// Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccScS_row(mi));
lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
}
// We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
// and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
// with V (which would be zero), we're fine. However, with ALiBi, we might modify these
// scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
// Tensor tKrK = make_fragment_like(tKsK);
// // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
// cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
// // if (cute::thread(1, 0)) { print(tKrK); }
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
if (!Kernel_traits::Is_V_in_regs) {
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
FLASH_NAMESPACE::cp_async_fence();
// if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
if (Is_first) {
cute::copy(tdOrdO, tdOsdO);
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
}
if (Kernel_traits::Is_V_in_regs) {
cute::cp_async_wait<1>();
__syncthreads();
Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view)); // M
cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
}
FLASH_NAMESPACE::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
bidb, bidh, tidx, params.h);
clear(acc_dv);
clear(acc_dk);
const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
FLASH_NAMESPACE::Alibi<Is_causal> alibi(alibi_slope, binfo.actual_seqlen_k, binfo.actual_seqlen_q);
for (; m_block >= m_block_min; --m_block) {
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
clear(acc_s);
cute::cp_async_wait<0>();
__syncthreads();
Tensor dP_sum = make_fragment_like(lse);
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }
// if (cute::thread0()) { print(sK); }
// Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
// #pragma unroll
// for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
// cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
// }
// if (cute::thread0()) { print(tSrK); }
FLASH_NAMESPACE::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
if constexpr (Is_softcap) {
FLASH_NAMESPACE::apply_softcap(acc_s, params.softcap);
}
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_s.layout()));
// if (cute::thread(32, 0)) { print(scores); }
// Softcapping - calculating dTanh and scaling dS later with it
[[maybe_unused]] Tensor dtanh = make_tensor_like(scores);
if constexpr (Is_softcap) {
FLASH_NAMESPACE::calculate_dtanh(scores, dtanh, params.softcap);
}
// Alibi
if (Has_alibi) {
alibi.apply_alibi(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
m_block * kBlockM + get<0>(taccScS_row(0)), AtomLayoutMS * 16);
}
// TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
// actual_seqlen_k, because acc_s would be some finite value for those indices.
// In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
// so the result would still be correct.
// However, it's possible that the values in acc_s are so large that they overflow
// when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
// So we need to mask out the elements beyond actual_seqlen_k.
if (!Is_causal && !Is_local) {
if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
FLASH_NAMESPACE::apply_mask(scores, binfo.actual_seqlen_k,
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
}
} else if (Is_causal) {
// Putting this causal masking right after acc_s is *much* slower for some reason.
// TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
// (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
// But we still want to mask out elements beyond actual_seqlen_k.
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
FLASH_NAMESPACE::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q,
// binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
AtomLayoutMS * 16);
}
} else if (Is_local) {
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
|| (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
FLASH_NAMESPACE::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q, AtomLayoutMS * 16,
params.window_size_left, params.window_size_right);
}
}
// if (cute::thread(32, 0)) { print(scores); }
// Compute the exponential value.
FLASH_NAMESPACE::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
if constexpr (Is_dropout) {
int warp_id = tidx / 32;
int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
// Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
static_assert(MMA_N_SdP % 2 == 0);
int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
acc_s, block_row_idx, block_col_idx, AtomLayoutMS
);
}
// Convert scores from fp32 to fp16/bf16
Tensor rP = !Is_dropout
? FLASH_NAMESPACE::convert_type<Element>(acc_s)
: FLASH_NAMESPACE::convert_type_relu<Element>(acc_s);
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_N, MMA_N / 2)
// if using m16n8k16 or (4, MMA_N, MMA_N) if using m16n8k8.
Tensor tPrP = make_tensor(rP.data(), FLASH_NAMESPACE::convert_layout_acc_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
// if (cute::thread0()) { print(tPaP); }
// __syncthreads();
// if (cute::thread0()) { print(sP); }
Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s)); // MMA
CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s)); // MMA
CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s)); // MMA
clear(acc_dp);
// Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), FLASH_NAMESPACE::convert_layout_acc_rowcol(acc_dp.layout()));
// #pragma unroll
// for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
// #pragma unroll
// for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
// acc_dp_reshaped(mi, ni) = -dP_sum(mi);
// }
// }
// if (cute::thread0()) { print(dP_sum); }
FLASH_NAMESPACE::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
);
// Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (row=(2, MMA_N), col=(2, MMA_N))
Tensor dS = make_tensor(acc_dp.data(), scores.layout());
auto pointwise_mult = [](float p, float dp, float d) {
return p * (!Is_dropout || p >= 0 ? dp - d : d);
};
#pragma unroll
for (int mi = 0; mi < size<0>(dS); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) {
float scaled_ds = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
if constexpr (Is_softcap) { scaled_ds *= dtanh(mi, ni); }
dS(mi, ni) = scaled_ds;
}
}
// if (cute::thread0()) { print(dS); }
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
if (Is_first || Seq_parallel) {
clear(acc_dq);
} else {
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
make_layout(get<0>(acc_dq.layout()),
get<2>(acc_dq.layout()),
get<1>(acc_dq.layout())));
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
}
if (Double_buffer && m_block > m_block_min) {
// Double buffer for sQ
const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
tQsQ.data() = tQsQ.data() + sQ_offset;
tSsQ.data() = tSsQ.data() + sQ_offset;
// Advance gQ
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
FLASH_NAMESPACE::cp_async_fence();
}
Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
// Convert dS from fp32 to fp16
Tensor tdSrdS = FLASH_NAMESPACE::convert_type<Element>(dS_reshaped);
// if (cute::thread0()) { print(tPrP); }
Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
__syncthreads();
// Layout p_l = tPrP.layout();
// Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
// FLASH_NAMESPACE::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
// Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
// FLASH_NAMESPACE::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
FLASH_NAMESPACE::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
// if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
// if (cute::thread0()) { print(acc_dv); }
__syncthreads(); // Need syncthreads since we're writing to the same sdO location
if (m_block > m_block_min) {
// Advance gdO
tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
if (Is_first) {
tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
} else {
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
FLASH_NAMESPACE::cp_async_fence();
}
}
FLASH_NAMESPACE::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
// if (cute::thread0()) { print(acc_dq); }
if (m_block > m_block_min) {
gLSE.data() = gLSE.data() + (-int(kBlockM));
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
gdPsum.data() = gdPsum.data() + (-int(kBlockM));
}
if (!Is_last) {
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
make_layout(get<0>(acc_dq.layout()),
get<2>(acc_dq.layout()),
get<1>(acc_dq.layout())));
if (!Seq_parallel) {
cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
} else {
// if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
}
} else {
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dq from fp32 to fp16
Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
}
FLASH_NAMESPACE::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
// if (cute::thread0()) { print(acc_dk); }
if (Double_buffer) { // Double buffer for sQ
tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
}
if (!Double_buffer && m_block > m_block_min) {
__syncthreads();
// Advance gQ
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
FLASH_NAMESPACE::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
FLASH_NAMESPACE::cp_async_fence();
}
if (Is_first && m_block > m_block_min) {
cute::copy(tdOrdO, tdOsdO);
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
}
if (Is_last) {
__syncthreads();
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
#pragma unroll
for (int m = 0; m < size<1>(tdQgdQ); ++m) {
if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
}
}
}
}
// Epilogue
if (Is_dropout) {
#pragma unroll
for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
}
#pragma unroll
for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dv from fp32 to fp16
Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);
Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
// Partition sdV and sdK to match the accumulator partitioning
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// We need syncthreads here since we're writing to the same location as sK and sV.
// Without syncthreads, some thread might modify the location of sK while another thread
// is reading it for dQ gemm, leading to a race condition.
// If Is_last, there's already a __syncthreads() at the end of the loop.
if (!Is_last) { __syncthreads(); }
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
__syncthreads();
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
FLASH_NAMESPACE::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params ¶ms) {
// The block index for the batch.
const int bidb = blockIdx.x;
// const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.y;
// const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
if (n_block_max == 1) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
} else {
// Iterating backward from n_block_max - 1 to 0 might save 1 register
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
}
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, typename Params>
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params ¶ms) {
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
|