--- library_name: peft license: llama3.2 base_model: alpindale/Llama-3.2-11B-Vision-Instruct tags: - generated_from_trainer datasets: - HuggingFaceH4/llava-instruct-mix-vsft model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: alpindale/Llama-3.2-11B-Vision-Instruct # optionally might have model_type or tokenizer_type or processor_type processor_type: AutoProcessor # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name strict: false # these 3 lines are needed for now to handle vision chat templates w images skip_prepare_dataset: true remove_unused_columns: false sample_packing: false chat_template: llama3_2_vision datasets: - path: HuggingFaceH4/llava-instruct-mix-vsft type: chat_template split: train[:1%] field_messages: messages dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out adapter: lora lora_model_dir: sequence_len: 8192 pad_to_sequence_len: false lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: 'language_model.model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj' wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: true gradient_checkpointing: true local_rank: logging_steps: 1 flash_attention: true eager_attention: warmup_ratio: 0.1 evals_per_epoch: 1 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: ```

# outputs/out This model is a fine-tuned version of [alpindale/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/alpindale/Llama-3.2-11B-Vision-Instruct) on the HuggingFaceH4/llava-instruct-mix-vsft dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0