---
library_name: peft
license: llama3.2
base_model: alpindale/Llama-3.2-11B-Vision-Instruct
tags:
- generated_from_trainer
datasets:
- HuggingFaceH4/llava-instruct-mix-vsft
model-index:
- name: outputs/out
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.8.0.dev0`
```yaml
base_model: alpindale/Llama-3.2-11B-Vision-Instruct
# optionally might have model_type or tokenizer_type or processor_type
processor_type: AutoProcessor
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
strict: false
# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
chat_template: llama3_2_vision
datasets:
- path: HuggingFaceH4/llava-instruct-mix-vsft
type: chat_template
split: train[:1%]
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out
adapter: lora
lora_model_dir:
sequence_len: 8192
pad_to_sequence_len: false
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'language_model.model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
local_rank:
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
```
# outputs/out
This model is a fine-tuned version of [alpindale/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/alpindale/Llama-3.2-11B-Vision-Instruct) on the HuggingFaceH4/llava-instruct-mix-vsft dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 1.0
### Training results
### Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0