k1h0 commited on
Commit
2229846
·
verified ·
1 Parent(s): ae4d08c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: deepseek-nlx-330k
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # deepseek-nlx-330k
18
+
19
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on the codes3_query_filtered_330k_nlx dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9963898916967509,
3
+ "num_input_tokens_seen": 144703488,
4
+ "total_flos": 5.635565866281075e+18,
5
+ "train_loss": 0.5665888682655666,
6
+ "train_runtime": 10913.0245,
7
+ "train_samples_per_second": 3.247,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 100000,
9
+ "eos_token_id": 100015,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 30,
20
+ "num_key_value_heads": 32,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 4096,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 10000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 102400
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "eos_token_id": 100015,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: DeepSeek-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: deepseekcoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes3_query_filtered_330k_nlx
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28aba7f82f5ce656674a3e922d68c0b7bd12d2f2e6da09e47fa72eec539c53c2
3
+ size 4987202208
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b5f404a4192d64823438ee820dd36fc5516f8e7a8357e50e200be30aef86bc0
3
+ size 4980944400
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2289ae058e1fc527bbf37c07cafa3dcee90e54f5e4597945a586a78a4e1509b0
3
+ size 4662149984
model.safetensors.index.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14630264832
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.norm.weight": "model-00003-of-00003.safetensors"
279
+ }
280
+ }
running_log.txt ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
2
+
3
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
4
+
5
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
6
+
7
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
8
+
9
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
10
+
11
+ [INFO|2025-05-12 09:58:27] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
12
+
13
+ [INFO|2025-05-12 09:58:28] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
14
+
15
+ [INFO|2025-05-12 09:58:29] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
16
+
17
+ [INFO|2025-05-12 09:58:29] configuration_utils.py:768 >> Model config LlamaConfig {
18
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
19
+ "architectures": [
20
+ "LlamaForCausalLM"
21
+ ],
22
+ "attention_bias": false,
23
+ "attention_dropout": 0.0,
24
+ "bos_token_id": 100000,
25
+ "eos_token_id": 100015,
26
+ "head_dim": 128,
27
+ "hidden_act": "silu",
28
+ "hidden_size": 4096,
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 11008,
31
+ "max_position_embeddings": 4096,
32
+ "mlp_bias": false,
33
+ "model_type": "llama",
34
+ "num_attention_heads": 32,
35
+ "num_hidden_layers": 30,
36
+ "num_key_value_heads": 32,
37
+ "pretraining_tp": 1,
38
+ "rms_norm_eps": 1e-06,
39
+ "rope_scaling": null,
40
+ "rope_theta": 10000.0,
41
+ "tie_word_embeddings": false,
42
+ "torch_dtype": "bfloat16",
43
+ "transformers_version": "4.48.2",
44
+ "use_cache": true,
45
+ "vocab_size": 102400
46
+ }
47
+
48
+
49
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
50
+
51
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
52
+
53
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
54
+
55
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
56
+
57
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
58
+
59
+ [INFO|2025-05-12 09:58:29] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
60
+
61
+ [INFO|2025-05-12 09:58:30] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
62
+
63
+ [INFO|2025-05-12 09:58:30] logging.py:157 >> Loading dataset Codes3_query_filtered_330k_nlx.json...
64
+
65
+ [INFO|2025-05-12 09:59:23] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
66
+
67
+ [INFO|2025-05-12 09:59:23] configuration_utils.py:768 >> Model config LlamaConfig {
68
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
69
+ "architectures": [
70
+ "LlamaForCausalLM"
71
+ ],
72
+ "attention_bias": false,
73
+ "attention_dropout": 0.0,
74
+ "bos_token_id": 100000,
75
+ "eos_token_id": 100015,
76
+ "head_dim": 128,
77
+ "hidden_act": "silu",
78
+ "hidden_size": 4096,
79
+ "initializer_range": 0.02,
80
+ "intermediate_size": 11008,
81
+ "max_position_embeddings": 4096,
82
+ "mlp_bias": false,
83
+ "model_type": "llama",
84
+ "num_attention_heads": 32,
85
+ "num_hidden_layers": 30,
86
+ "num_key_value_heads": 32,
87
+ "pretraining_tp": 1,
88
+ "rms_norm_eps": 1e-06,
89
+ "rope_scaling": null,
90
+ "rope_theta": 10000.0,
91
+ "tie_word_embeddings": false,
92
+ "torch_dtype": "bfloat16",
93
+ "transformers_version": "4.48.2",
94
+ "use_cache": true,
95
+ "vocab_size": 102400
96
+ }
97
+
98
+
99
+ [WARNING|2025-05-12 09:59:23] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
100
+
101
+ [INFO|2025-05-12 09:59:23] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
102
+
103
+ [INFO|2025-05-12 09:59:23] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
104
+
105
+ [INFO|2025-05-12 09:59:23] logging.py:157 >> Liger kernel has been applied to the model.
106
+
107
+ [INFO|2025-05-12 09:59:24] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/model.safetensors.index.json
108
+
109
+ [INFO|2025-05-12 10:01:40] modeling_utils.py:1582 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
110
+
111
+ [INFO|2025-05-12 10:01:40] configuration_utils.py:1140 >> Generate config GenerationConfig {
112
+ "bos_token_id": 100000,
113
+ "eos_token_id": 100015
114
+ }
115
+
116
+
117
+ [INFO|2025-05-12 10:01:45] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
118
+
119
+
120
+ [INFO|2025-05-12 10:01:45] modeling_utils.py:4896 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at deepseek-ai/deepseek-coder-7b-instruct-v1.5.
121
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
122
+
123
+ [INFO|2025-05-12 10:01:46] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/generation_config.json
124
+
125
+ [INFO|2025-05-12 10:01:46] configuration_utils.py:1140 >> Generate config GenerationConfig {
126
+ "bos_token_id": 100000,
127
+ "eos_token_id": 100015
128
+ }
129
+
130
+
131
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> Gradient checkpointing enabled.
132
+
133
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> Using torch SDPA for faster training and inference.
134
+
135
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> Upcasting trainable params to float32.
136
+
137
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> Fine-tuning method: Freeze
138
+
139
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> Set trainable layers: .14.,.29.
140
+
141
+ [INFO|2025-05-12 10:01:46] logging.py:157 >> trainable params: 404,766,720 || all params: 6,910,365,696 || trainable%: 5.8574
142
+
143
+ [INFO|2025-05-12 10:01:46] trainer.py:741 >> Using auto half precision backend
144
+
145
+ [INFO|2025-05-12 10:01:47] logging.py:157 >> Found linear modules: k_proj,v_proj,o_proj,down_proj,q_proj,up_proj,gate_proj
146
+
147
+ [INFO|2025-05-12 10:01:47] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
148
+
149
+ [INFO|2025-05-12 10:01:47] trainer.py:2369 >> ***** Running training *****
150
+
151
+ [INFO|2025-05-12 10:01:47] trainer.py:2370 >> Num examples = 35,434
152
+
153
+ [INFO|2025-05-12 10:01:47] trainer.py:2371 >> Num Epochs = 1
154
+
155
+ [INFO|2025-05-12 10:01:47] trainer.py:2372 >> Instantaneous batch size per device = 16
156
+
157
+ [INFO|2025-05-12 10:01:47] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 512
158
+
159
+ [INFO|2025-05-12 10:01:47] trainer.py:2376 >> Gradient Accumulation steps = 8
160
+
161
+ [INFO|2025-05-12 10:01:47] trainer.py:2377 >> Total optimization steps = 69
162
+
163
+ [INFO|2025-05-12 10:01:47] trainer.py:2378 >> Number of trainable parameters = 404,766,720
164
+
165
+ [INFO|2025-05-12 10:04:36] logging.py:157 >> {'loss': 0.8402, 'learning_rate': 4.9974e-05, 'epoch': 0.01, 'throughput': 12482.16}
166
+
167
+ [INFO|2025-05-12 10:07:14] logging.py:157 >> {'loss': 0.7686, 'learning_rate': 4.9896e-05, 'epoch': 0.03, 'throughput': 12852.44}
168
+
169
+ [INFO|2025-05-12 10:09:52] logging.py:157 >> {'loss': 0.7563, 'learning_rate': 4.9767e-05, 'epoch': 0.04, 'throughput': 12981.50}
170
+
171
+ [INFO|2025-05-12 10:12:30] logging.py:157 >> {'loss': 0.7139, 'learning_rate': 4.9587e-05, 'epoch': 0.06, 'throughput': 13054.16}
172
+
173
+ [INFO|2025-05-12 10:15:08] logging.py:157 >> {'loss': 0.6793, 'learning_rate': 4.9355e-05, 'epoch': 0.07, 'throughput': 13098.17}
174
+
175
+ [INFO|2025-05-12 10:17:46] logging.py:157 >> {'loss': 0.6631, 'learning_rate': 4.9073e-05, 'epoch': 0.09, 'throughput': 13124.77}
176
+
177
+ [INFO|2025-05-12 10:20:25] logging.py:157 >> {'loss': 0.6400, 'learning_rate': 4.8741e-05, 'epoch': 0.10, 'throughput': 13144.27}
178
+
179
+ [INFO|2025-05-12 10:23:03] logging.py:157 >> {'loss': 0.6145, 'learning_rate': 4.8360e-05, 'epoch': 0.12, 'throughput': 13158.63}
180
+
181
+ [INFO|2025-05-12 10:25:41] logging.py:157 >> {'loss': 0.5997, 'learning_rate': 4.7930e-05, 'epoch': 0.13, 'throughput': 13173.26}
182
+
183
+ [INFO|2025-05-12 10:28:19] logging.py:157 >> {'loss': 0.5896, 'learning_rate': 4.7453e-05, 'epoch': 0.14, 'throughput': 13182.64}
184
+
185
+ [INFO|2025-05-12 10:30:56] logging.py:157 >> {'loss': 0.6025, 'learning_rate': 4.6930e-05, 'epoch': 0.16, 'throughput': 13191.88}
186
+
187
+ [INFO|2025-05-12 10:33:35] logging.py:157 >> {'loss': 0.5644, 'learning_rate': 4.6360e-05, 'epoch': 0.17, 'throughput': 13197.39}
188
+
189
+ [INFO|2025-05-12 10:36:12] logging.py:157 >> {'loss': 0.5558, 'learning_rate': 4.5747e-05, 'epoch': 0.19, 'throughput': 13204.31}
190
+
191
+ [INFO|2025-05-12 10:38:51] logging.py:157 >> {'loss': 0.5705, 'learning_rate': 4.5091e-05, 'epoch': 0.20, 'throughput': 13208.35}
192
+
193
+ [INFO|2025-05-12 10:41:29] logging.py:157 >> {'loss': 0.5694, 'learning_rate': 4.4393e-05, 'epoch': 0.22, 'throughput': 13212.19}
194
+
195
+ [INFO|2025-05-12 10:44:06] logging.py:157 >> {'loss': 0.5590, 'learning_rate': 4.3655e-05, 'epoch': 0.23, 'throughput': 13217.11}
196
+
197
+ [INFO|2025-05-12 10:46:44] logging.py:157 >> {'loss': 0.5628, 'learning_rate': 4.2878e-05, 'epoch': 0.25, 'throughput': 13220.46}
198
+
199
+ [INFO|2025-05-12 10:49:23] logging.py:157 >> {'loss': 0.5553, 'learning_rate': 4.2064e-05, 'epoch': 0.26, 'throughput': 13223.11}
200
+
201
+ [INFO|2025-05-12 10:52:01] logging.py:157 >> {'loss': 0.5401, 'learning_rate': 4.1215e-05, 'epoch': 0.27, 'throughput': 13225.48}
202
+
203
+ [INFO|2025-05-12 10:54:39] logging.py:157 >> {'loss': 0.5750, 'learning_rate': 4.0332e-05, 'epoch': 0.29, 'throughput': 13226.89}
204
+
205
+ [INFO|2025-05-12 10:57:17] logging.py:157 >> {'loss': 0.5398, 'learning_rate': 3.9417e-05, 'epoch': 0.30, 'throughput': 13228.58}
206
+
207
+ [INFO|2025-05-12 10:59:55] logging.py:157 >> {'loss': 0.5389, 'learning_rate': 3.8472e-05, 'epoch': 0.32, 'throughput': 13231.10}
208
+
209
+ [INFO|2025-05-12 11:02:32] logging.py:157 >> {'loss': 0.5451, 'learning_rate': 3.7500e-05, 'epoch': 0.33, 'throughput': 13234.31}
210
+
211
+ [INFO|2025-05-12 11:05:11] logging.py:157 >> {'loss': 0.5558, 'learning_rate': 3.6502e-05, 'epoch': 0.35, 'throughput': 13235.05}
212
+
213
+ [INFO|2025-05-12 11:07:48] logging.py:157 >> {'loss': 0.5403, 'learning_rate': 3.5479e-05, 'epoch': 0.36, 'throughput': 13238.00}
214
+
215
+ [INFO|2025-05-12 11:10:26] logging.py:157 >> {'loss': 0.5405, 'learning_rate': 3.4435e-05, 'epoch': 0.38, 'throughput': 13240.74}
216
+
217
+ [INFO|2025-05-12 11:13:04] logging.py:157 >> {'loss': 0.5577, 'learning_rate': 3.3372e-05, 'epoch': 0.39, 'throughput': 13242.13}
218
+
219
+ [INFO|2025-05-12 11:15:42] logging.py:157 >> {'loss': 0.5345, 'learning_rate': 3.2291e-05, 'epoch': 0.40, 'throughput': 13243.46}
220
+
221
+ [INFO|2025-05-12 11:18:20] logging.py:157 >> {'loss': 0.5484, 'learning_rate': 3.1195e-05, 'epoch': 0.42, 'throughput': 13243.76}
222
+
223
+ [INFO|2025-05-12 11:20:58] logging.py:157 >> {'loss': 0.5485, 'learning_rate': 3.0086e-05, 'epoch': 0.43, 'throughput': 13245.01}
224
+
225
+ [INFO|2025-05-12 11:23:36] logging.py:157 >> {'loss': 0.5299, 'learning_rate': 2.8967e-05, 'epoch': 0.45, 'throughput': 13245.72}
226
+
227
+ [INFO|2025-05-12 11:26:14] logging.py:157 >> {'loss': 0.5390, 'learning_rate': 2.7840e-05, 'epoch': 0.46, 'throughput': 13246.45}
228
+
229
+ [INFO|2025-05-12 11:28:52] logging.py:157 >> {'loss': 0.5248, 'learning_rate': 2.6706e-05, 'epoch': 0.48, 'throughput': 13247.54}
230
+
231
+ [INFO|2025-05-12 11:31:30] logging.py:157 >> {'loss': 0.5342, 'learning_rate': 2.5569e-05, 'epoch': 0.49, 'throughput': 13248.46}
232
+
233
+ [INFO|2025-05-12 11:34:08] logging.py:157 >> {'loss': 0.5431, 'learning_rate': 2.4431e-05, 'epoch': 0.51, 'throughput': 13249.53}
234
+
235
+ [INFO|2025-05-12 11:36:45] logging.py:157 >> {'loss': 0.5471, 'learning_rate': 2.3294e-05, 'epoch': 0.52, 'throughput': 13250.51}
236
+
237
+ [INFO|2025-05-12 11:39:23] logging.py:157 >> {'loss': 0.5420, 'learning_rate': 2.2160e-05, 'epoch': 0.53, 'throughput': 13251.85}
238
+
239
+ [INFO|2025-05-12 11:42:01] logging.py:157 >> {'loss': 0.5420, 'learning_rate': 2.1033e-05, 'epoch': 0.55, 'throughput': 13253.57}
240
+
241
+ [INFO|2025-05-12 11:44:38] logging.py:157 >> {'loss': 0.5420, 'learning_rate': 1.9914e-05, 'epoch': 0.56, 'throughput': 13255.10}
242
+
243
+ [INFO|2025-05-12 11:47:16] logging.py:157 >> {'loss': 0.5425, 'learning_rate': 1.8805e-05, 'epoch': 0.58, 'throughput': 13256.36}
244
+
245
+ [INFO|2025-05-12 11:49:54] logging.py:157 >> {'loss': 0.5482, 'learning_rate': 1.7709e-05, 'epoch': 0.59, 'throughput': 13257.04}
246
+
247
+ [INFO|2025-05-12 11:52:31] logging.py:157 >> {'loss': 0.5598, 'learning_rate': 1.6628e-05, 'epoch': 0.61, 'throughput': 13258.73}
248
+
249
+ [INFO|2025-05-12 11:55:08] logging.py:157 >> {'loss': 0.5402, 'learning_rate': 1.5565e-05, 'epoch': 0.62, 'throughput': 13260.29}
250
+
251
+ [INFO|2025-05-12 11:57:46] logging.py:157 >> {'loss': 0.5413, 'learning_rate': 1.4521e-05, 'epoch': 0.64, 'throughput': 13261.50}
252
+
253
+ [INFO|2025-05-12 12:00:24] logging.py:157 >> {'loss': 0.5560, 'learning_rate': 1.3498e-05, 'epoch': 0.65, 'throughput': 13262.39}
254
+
255
+ [INFO|2025-05-12 12:03:01] logging.py:157 >> {'loss': 0.5341, 'learning_rate': 1.2500e-05, 'epoch': 0.66, 'throughput': 13263.23}
256
+
257
+ [INFO|2025-05-12 12:05:39] logging.py:157 >> {'loss': 0.5436, 'learning_rate': 1.1528e-05, 'epoch': 0.68, 'throughput': 13264.02}
258
+
259
+ [INFO|2025-05-12 12:08:16] logging.py:157 >> {'loss': 0.5393, 'learning_rate': 1.0583e-05, 'epoch': 0.69, 'throughput': 13264.84}
260
+
261
+ [INFO|2025-05-12 12:10:54] logging.py:157 >> {'loss': 0.5598, 'learning_rate': 9.6683e-06, 'epoch': 0.71, 'throughput': 13265.65}
262
+
263
+ [INFO|2025-05-12 12:13:32] logging.py:157 >> {'loss': 0.5329, 'learning_rate': 8.7854e-06, 'epoch': 0.72, 'throughput': 13265.87}
264
+
265
+ [INFO|2025-05-12 12:16:10] logging.py:157 >> {'loss': 0.5384, 'learning_rate': 7.9362e-06, 'epoch': 0.74, 'throughput': 13266.73}
266
+
267
+ [INFO|2025-05-12 12:18:47] logging.py:157 >> {'loss': 0.5447, 'learning_rate': 7.1223e-06, 'epoch': 0.75, 'throughput': 13267.67}
268
+
269
+ [INFO|2025-05-12 12:21:25] logging.py:157 >> {'loss': 0.5291, 'learning_rate': 6.3454e-06, 'epoch': 0.77, 'throughput': 13268.20}
270
+
271
+ [INFO|2025-05-12 12:24:02] logging.py:157 >> {'loss': 0.5258, 'learning_rate': 5.6072e-06, 'epoch': 0.78, 'throughput': 13269.48}
272
+
273
+ [INFO|2025-05-12 12:26:40] logging.py:157 >> {'loss': 0.5508, 'learning_rate': 4.9092e-06, 'epoch': 0.79, 'throughput': 13270.12}
274
+
275
+ [INFO|2025-05-12 12:29:18] logging.py:157 >> {'loss': 0.5439, 'learning_rate': 4.2529e-06, 'epoch': 0.81, 'throughput': 13270.24}
276
+
277
+ [INFO|2025-05-12 12:31:56] logging.py:157 >> {'loss': 0.5261, 'learning_rate': 3.6395e-06, 'epoch': 0.82, 'throughput': 13270.03}
278
+
279
+ [INFO|2025-05-12 12:34:34] logging.py:157 >> {'loss': 0.5518, 'learning_rate': 3.0704e-06, 'epoch': 0.84, 'throughput': 13270.36}
280
+
281
+ [INFO|2025-05-12 12:37:11] logging.py:157 >> {'loss': 0.5444, 'learning_rate': 2.5468e-06, 'epoch': 0.85, 'throughput': 13270.70}
282
+
283
+ [INFO|2025-05-12 12:39:49] logging.py:157 >> {'loss': 0.5469, 'learning_rate': 2.0697e-06, 'epoch': 0.87, 'throughput': 13270.96}
284
+
285
+ [INFO|2025-05-12 12:42:27] logging.py:157 >> {'loss': 0.5335, 'learning_rate': 1.6402e-06, 'epoch': 0.88, 'throughput': 13271.26}
286
+
287
+ [INFO|2025-05-12 12:45:04] logging.py:157 >> {'loss': 0.5367, 'learning_rate': 1.2590e-06, 'epoch': 0.90, 'throughput': 13272.14}
288
+
289
+ [INFO|2025-05-12 12:47:42] logging.py:157 >> {'loss': 0.5510, 'learning_rate': 9.2707e-07, 'epoch': 0.91, 'throughput': 13272.46}
290
+
291
+ [INFO|2025-05-12 12:50:20] logging.py:157 >> {'loss': 0.5597, 'learning_rate': 6.4502e-07, 'epoch': 0.92, 'throughput': 13272.79}
292
+
293
+ [INFO|2025-05-12 12:52:57] logging.py:157 >> {'loss': 0.5369, 'learning_rate': 4.1346e-07, 'epoch': 0.94, 'throughput': 13273.81}
294
+
295
+ [INFO|2025-05-12 12:55:33] logging.py:157 >> {'loss': 0.5451, 'learning_rate': 2.3285e-07, 'epoch': 0.95, 'throughput': 13276.09}
296
+
297
+ [INFO|2025-05-12 12:58:09] logging.py:157 >> {'loss': 0.5237, 'learning_rate': 1.0358e-07, 'epoch': 0.97, 'throughput': 13279.42}
298
+
299
+ [INFO|2025-05-12 13:00:44] logging.py:157 >> {'loss': 0.5604, 'learning_rate': 2.5908e-08, 'epoch': 0.98, 'throughput': 13283.18}
300
+
301
+ [INFO|2025-05-12 13:03:19] logging.py:157 >> {'loss': 0.5340, 'learning_rate': 0.0000e+00, 'epoch': 1.00, 'throughput': 13286.80}
302
+
303
+ [INFO|2025-05-12 13:03:19] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69
304
+
305
+ [INFO|2025-05-12 13:03:19] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69/config.json
306
+
307
+ [INFO|2025-05-12 13:03:19] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69/generation_config.json
308
+
309
+ [INFO|2025-05-12 13:03:40] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69/model.safetensors.index.json.
310
+
311
+ [INFO|2025-05-12 13:03:40] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69/tokenizer_config.json
312
+
313
+ [INFO|2025-05-12 13:03:40] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/checkpoint-69/special_tokens_map.json
314
+
315
+ [INFO|2025-05-12 13:03:40] trainer.py:2643 >>
316
+
317
+ Training completed. Do not forget to share your model on huggingface.co/models =)
318
+
319
+
320
+
321
+ [INFO|2025-05-12 13:03:40] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k
322
+
323
+ [INFO|2025-05-12 13:03:40] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/config.json
324
+
325
+ [INFO|2025-05-12 13:03:40] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/generation_config.json
326
+
327
+ [INFO|2025-05-12 13:04:02] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/model.safetensors.index.json.
328
+
329
+ [INFO|2025-05-12 13:04:02] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/tokenizer_config.json
330
+
331
+ [INFO|2025-05-12 13:04:02] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k/special_tokens_map.json
332
+
333
+ [WARNING|2025-05-12 13:04:02] logging.py:162 >> No metric eval_loss to plot.
334
+
335
+ [WARNING|2025-05-12 13:04:02] logging.py:162 >> No metric eval_accuracy to plot.
336
+
337
+ [INFO|2025-05-12 13:04:02] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
338
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
339
+
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "100002": {
23
+ "content": "ø",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "100003": {
31
+ "content": "ö",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "100004": {
39
+ "content": "ú",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "100005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "100006": {
55
+ "content": "õ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "100007": {
63
+ "content": "÷",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "100008": {
71
+ "content": "û",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "100009": {
79
+ "content": "ý",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "100010": {
87
+ "content": "À",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "100011": {
95
+ "content": "ù",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "100012": {
103
+ "content": "Á",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "100013": {
111
+ "content": "þ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "100014": {
119
+ "content": "ü",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "100015": {
127
+ "content": "<|EOT|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ }
134
+ },
135
+ "bos_token": "<|begin▁of▁sentence|>",
136
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
137
+ "clean_up_tokenization_spaces": false,
138
+ "eos_token": "<|EOT|>",
139
+ "extra_special_tokens": {},
140
+ "legacy": true,
141
+ "model_max_length": 4096,
142
+ "pad_token": "<|end▁of▁sentence|>",
143
+ "padding_side": "right",
144
+ "sp_model_kwargs": {},
145
+ "split_special_tokens": false,
146
+ "tokenizer_class": "LlamaTokenizer",
147
+ "unk_token": null,
148
+ "use_default_system_prompt": false
149
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9963898916967509,
3
+ "num_input_tokens_seen": 144703488,
4
+ "total_flos": 5.635565866281075e+18,
5
+ "train_loss": 0.5665888682655666,
6
+ "train_runtime": 10913.0245,
7
+ "train_samples_per_second": 3.247,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 69, "loss": 0.8402, "lr": 4.9974091841168195e-05, "epoch": 0.01444043321299639, "percentage": 1.45, "elapsed_time": "0:02:48", "remaining_time": "3:10:24", "throughput": 12482.16, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 69, "loss": 0.7686, "lr": 4.9896421063288286e-05, "epoch": 0.02888086642599278, "percentage": 2.9, "elapsed_time": "0:05:26", "remaining_time": "3:02:12", "throughput": 12852.44, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 69, "loss": 0.7563, "lr": 4.976714865090827e-05, "epoch": 0.04332129963898917, "percentage": 4.35, "elapsed_time": "0:08:04", "remaining_time": "2:57:42", "throughput": 12981.5, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 69, "loss": 0.7139, "lr": 4.958654254084355e-05, "epoch": 0.05776173285198556, "percentage": 5.8, "elapsed_time": "0:10:42", "remaining_time": "2:54:02", "throughput": 13054.16, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 69, "loss": 0.6793, "lr": 4.9354977066836986e-05, "epoch": 0.07220216606498195, "percentage": 7.25, "elapsed_time": "0:13:20", "remaining_time": "2:50:47", "throughput": 13098.17, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 69, "loss": 0.6631, "lr": 4.907293218369499e-05, "epoch": 0.08664259927797834, "percentage": 8.7, "elapsed_time": "0:15:58", "remaining_time": "2:47:46", "throughput": 13124.77, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 69, "loss": 0.64, "lr": 4.874099247250798e-05, "epoch": 0.10108303249097472, "percentage": 10.14, "elapsed_time": "0:18:36", "remaining_time": "2:44:52", "throughput": 13144.27, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 69, "loss": 0.6145, "lr": 4.835984592901678e-05, "epoch": 0.11552346570397112, "percentage": 11.59, "elapsed_time": "0:21:14", "remaining_time": "2:42:01", "throughput": 13158.63, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 69, "loss": 0.5997, "lr": 4.793028253763633e-05, "epoch": 0.1299638989169675, "percentage": 13.04, "elapsed_time": "0:23:52", "remaining_time": "2:39:11", "throughput": 13173.26, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 69, "loss": 0.5896, "lr": 4.74531926340924e-05, "epoch": 0.1444043321299639, "percentage": 14.49, "elapsed_time": "0:26:30", "remaining_time": "2:36:25", "throughput": 13182.64, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 69, "loss": 0.6025, "lr": 4.6929565060064864e-05, "epoch": 0.1588447653429603, "percentage": 15.94, "elapsed_time": "0:29:08", "remaining_time": "2:33:40", "throughput": 13191.88, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 69, "loss": 0.5644, "lr": 4.6360485113662216e-05, "epoch": 0.17328519855595667, "percentage": 17.39, "elapsed_time": "0:31:46", "remaining_time": "2:30:57", "throughput": 13197.39, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 69, "loss": 0.5558, "lr": 4.574713229997563e-05, "epoch": 0.18772563176895307, "percentage": 18.84, "elapsed_time": "0:34:24", "remaining_time": "2:28:14", "throughput": 13204.31, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 69, "loss": 0.5705, "lr": 4.509077788637446e-05, "epoch": 0.20216606498194944, "percentage": 20.29, "elapsed_time": "0:37:02", "remaining_time": "2:25:32", "throughput": 13208.35, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 69, "loss": 0.5694, "lr": 4.43927822676105e-05, "epoch": 0.21660649819494585, "percentage": 21.74, "elapsed_time": "0:39:40", "remaining_time": "2:22:51", "throughput": 13212.19, "total_tokens": 31457280}
16
+ {"current_steps": 16, "total_steps": 69, "loss": 0.559, "lr": 4.365459214619214e-05, "epoch": 0.23104693140794225, "percentage": 23.19, "elapsed_time": "0:42:18", "remaining_time": "2:20:09", "throughput": 13217.11, "total_tokens": 33554432}
17
+ {"current_steps": 17, "total_steps": 69, "loss": 0.5628, "lr": 4.2877737533872485e-05, "epoch": 0.24548736462093862, "percentage": 24.64, "elapsed_time": "0:44:56", "remaining_time": "2:17:28", "throughput": 13220.46, "total_tokens": 35651584}
18
+ {"current_steps": 18, "total_steps": 69, "loss": 0.5553, "lr": 4.206382858046636e-05, "epoch": 0.259927797833935, "percentage": 26.09, "elapsed_time": "0:47:34", "remaining_time": "2:14:48", "throughput": 13223.11, "total_tokens": 37748736}
19
+ {"current_steps": 19, "total_steps": 69, "loss": 0.5401, "lr": 4.12145522365689e-05, "epoch": 0.2743682310469314, "percentage": 27.54, "elapsed_time": "0:50:12", "remaining_time": "2:12:08", "throughput": 13225.48, "total_tokens": 39845888}
20
+ {"current_steps": 20, "total_steps": 69, "loss": 0.575, "lr": 4.033166875709291e-05, "epoch": 0.2888086642599278, "percentage": 28.99, "elapsed_time": "0:52:51", "remaining_time": "2:09:29", "throughput": 13226.89, "total_tokens": 41943040}
21
+ {"current_steps": 21, "total_steps": 69, "loss": 0.5398, "lr": 3.941700805287168e-05, "epoch": 0.30324909747292417, "percentage": 30.43, "elapsed_time": "0:55:29", "remaining_time": "2:06:49", "throughput": 13228.58, "total_tokens": 44040192}
22
+ {"current_steps": 22, "total_steps": 69, "loss": 0.5389, "lr": 3.8472465897889394e-05, "epoch": 0.3176895306859206, "percentage": 31.88, "elapsed_time": "0:58:07", "remaining_time": "2:04:09", "throughput": 13231.1, "total_tokens": 46137344}
23
+ {"current_steps": 23, "total_steps": 69, "loss": 0.5451, "lr": 3.7500000000000003e-05, "epoch": 0.33212996389891697, "percentage": 33.33, "elapsed_time": "1:00:44", "remaining_time": "2:01:29", "throughput": 13234.31, "total_tokens": 48234496}
24
+ {"current_steps": 24, "total_steps": 69, "loss": 0.5558, "lr": 3.6501625943278805e-05, "epoch": 0.34657039711191334, "percentage": 34.78, "elapsed_time": "1:03:22", "remaining_time": "1:58:50", "throughput": 13235.05, "total_tokens": 50331648}
25
+ {"current_steps": 25, "total_steps": 69, "loss": 0.5403, "lr": 3.547941301041661e-05, "epoch": 0.36101083032490977, "percentage": 36.23, "elapsed_time": "1:06:00", "remaining_time": "1:56:10", "throughput": 13238.0, "total_tokens": 52428800}
26
+ {"current_steps": 26, "total_steps": 69, "loss": 0.5405, "lr": 3.443547989381536e-05, "epoch": 0.37545126353790614, "percentage": 37.68, "elapsed_time": "1:08:38", "remaining_time": "1:53:30", "throughput": 13240.74, "total_tokens": 54525952}
27
+ {"current_steps": 27, "total_steps": 69, "loss": 0.5577, "lr": 3.3371990304274656e-05, "epoch": 0.3898916967509025, "percentage": 39.13, "elapsed_time": "1:11:15", "remaining_time": "1:50:51", "throughput": 13242.13, "total_tokens": 56623104}
28
+ {"current_steps": 28, "total_steps": 69, "loss": 0.5345, "lr": 3.2291148486370626e-05, "epoch": 0.4043321299638989, "percentage": 40.58, "elapsed_time": "1:13:53", "remaining_time": "1:48:12", "throughput": 13243.46, "total_tokens": 58720256}
29
+ {"current_steps": 29, "total_steps": 69, "loss": 0.5484, "lr": 3.11951946498225e-05, "epoch": 0.4187725631768953, "percentage": 42.03, "elapsed_time": "1:16:32", "remaining_time": "1:45:34", "throughput": 13243.76, "total_tokens": 60817408}
30
+ {"current_steps": 30, "total_steps": 69, "loss": 0.5485, "lr": 3.008640032631585e-05, "epoch": 0.4332129963898917, "percentage": 43.48, "elapsed_time": "1:19:10", "remaining_time": "1:42:55", "throughput": 13245.01, "total_tokens": 62914560}
31
+ {"current_steps": 31, "total_steps": 69, "loss": 0.5299, "lr": 2.8967063661406285e-05, "epoch": 0.44765342960288806, "percentage": 44.93, "elapsed_time": "1:21:48", "remaining_time": "1:40:16", "throughput": 13245.72, "total_tokens": 65011712}
32
+ {"current_steps": 32, "total_steps": 69, "loss": 0.539, "lr": 2.7839504651261872e-05, "epoch": 0.4620938628158845, "percentage": 46.38, "elapsed_time": "1:24:26", "remaining_time": "1:37:37", "throughput": 13246.45, "total_tokens": 67108864}
33
+ {"current_steps": 33, "total_steps": 69, "loss": 0.5248, "lr": 2.6706060334116777e-05, "epoch": 0.47653429602888087, "percentage": 47.83, "elapsed_time": "1:27:04", "remaining_time": "1:34:58", "throughput": 13247.54, "total_tokens": 69206016}
34
+ {"current_steps": 34, "total_steps": 69, "loss": 0.5342, "lr": 2.556907994640264e-05, "epoch": 0.49097472924187724, "percentage": 49.28, "elapsed_time": "1:29:41", "remaining_time": "1:32:20", "throughput": 13248.46, "total_tokens": 71303168}
35
+ {"current_steps": 35, "total_steps": 69, "loss": 0.5431, "lr": 2.4430920053597356e-05, "epoch": 0.5054151624548736, "percentage": 50.72, "elapsed_time": "1:32:19", "remaining_time": "1:29:41", "throughput": 13249.53, "total_tokens": 73400320}
36
+ {"current_steps": 36, "total_steps": 69, "loss": 0.5471, "lr": 2.329393966588323e-05, "epoch": 0.51985559566787, "percentage": 52.17, "elapsed_time": "1:34:57", "remaining_time": "1:27:02", "throughput": 13250.51, "total_tokens": 75497472}
37
+ {"current_steps": 37, "total_steps": 69, "loss": 0.542, "lr": 2.2160495348738123e-05, "epoch": 0.5342960288808665, "percentage": 53.62, "elapsed_time": "1:37:35", "remaining_time": "1:24:24", "throughput": 13251.85, "total_tokens": 77594624}
38
+ {"current_steps": 38, "total_steps": 69, "loss": 0.542, "lr": 2.1032936338593718e-05, "epoch": 0.5487364620938628, "percentage": 55.07, "elapsed_time": "1:40:12", "remaining_time": "1:21:45", "throughput": 13253.57, "total_tokens": 79691776}
39
+ {"current_steps": 39, "total_steps": 69, "loss": 0.542, "lr": 1.991359967368416e-05, "epoch": 0.5631768953068592, "percentage": 56.52, "elapsed_time": "1:42:50", "remaining_time": "1:19:06", "throughput": 13255.1, "total_tokens": 81788928}
40
+ {"current_steps": 40, "total_steps": 69, "loss": 0.5425, "lr": 1.8804805350177505e-05, "epoch": 0.5776173285198556, "percentage": 57.97, "elapsed_time": "1:45:27", "remaining_time": "1:16:27", "throughput": 13256.36, "total_tokens": 83886080}
41
+ {"current_steps": 41, "total_steps": 69, "loss": 0.5482, "lr": 1.7708851513629377e-05, "epoch": 0.592057761732852, "percentage": 59.42, "elapsed_time": "1:48:05", "remaining_time": "1:13:49", "throughput": 13257.04, "total_tokens": 85983232}
42
+ {"current_steps": 42, "total_steps": 69, "loss": 0.5598, "lr": 1.6628009695725346e-05, "epoch": 0.6064981949458483, "percentage": 60.87, "elapsed_time": "1:50:43", "remaining_time": "1:11:10", "throughput": 13258.73, "total_tokens": 88080384}
43
+ {"current_steps": 43, "total_steps": 69, "loss": 0.5402, "lr": 1.5564520106184644e-05, "epoch": 0.6209386281588448, "percentage": 62.32, "elapsed_time": "1:53:20", "remaining_time": "1:08:31", "throughput": 13260.29, "total_tokens": 90177536}
44
+ {"current_steps": 44, "total_steps": 69, "loss": 0.5413, "lr": 1.4520586989583406e-05, "epoch": 0.6353790613718412, "percentage": 63.77, "elapsed_time": "1:55:58", "remaining_time": "1:05:53", "throughput": 13261.5, "total_tokens": 92274688}
45
+ {"current_steps": 45, "total_steps": 69, "loss": 0.556, "lr": 1.3498374056721197e-05, "epoch": 0.6498194945848376, "percentage": 65.22, "elapsed_time": "1:58:35", "remaining_time": "1:03:15", "throughput": 13262.39, "total_tokens": 94371840}
46
+ {"current_steps": 46, "total_steps": 69, "loss": 0.5341, "lr": 1.2500000000000006e-05, "epoch": 0.6642599277978339, "percentage": 66.67, "elapsed_time": "2:01:13", "remaining_time": "1:00:36", "throughput": 13263.23, "total_tokens": 96468992}
47
+ {"current_steps": 47, "total_steps": 69, "loss": 0.5436, "lr": 1.1527534102110612e-05, "epoch": 0.6787003610108303, "percentage": 68.12, "elapsed_time": "2:03:51", "remaining_time": "0:57:58", "throughput": 13264.02, "total_tokens": 98566144}
48
+ {"current_steps": 48, "total_steps": 69, "loss": 0.5393, "lr": 1.0582991947128324e-05, "epoch": 0.6931407942238267, "percentage": 69.57, "elapsed_time": "2:06:28", "remaining_time": "0:55:20", "throughput": 13264.84, "total_tokens": 100663296}
49
+ {"current_steps": 49, "total_steps": 69, "loss": 0.5598, "lr": 9.668331242907089e-06, "epoch": 0.7075812274368231, "percentage": 71.01, "elapsed_time": "2:09:06", "remaining_time": "0:52:41", "throughput": 13265.65, "total_tokens": 102760448}
50
+ {"current_steps": 50, "total_steps": 69, "loss": 0.5329, "lr": 8.785447763431101e-06, "epoch": 0.7220216606498195, "percentage": 72.46, "elapsed_time": "2:11:44", "remaining_time": "0:50:03", "throughput": 13265.87, "total_tokens": 104857600}
51
+ {"current_steps": 51, "total_steps": 69, "loss": 0.5384, "lr": 7.936171419533653e-06, "epoch": 0.7364620938628159, "percentage": 73.91, "elapsed_time": "2:14:21", "remaining_time": "0:47:25", "throughput": 13266.73, "total_tokens": 106954752}
52
+ {"current_steps": 52, "total_steps": 69, "loss": 0.5447, "lr": 7.122262466127514e-06, "epoch": 0.7509025270758123, "percentage": 75.36, "elapsed_time": "2:16:59", "remaining_time": "0:44:47", "throughput": 13267.67, "total_tokens": 109051904}
53
+ {"current_steps": 53, "total_steps": 69, "loss": 0.5291, "lr": 6.3454078538078635e-06, "epoch": 0.7653429602888087, "percentage": 76.81, "elapsed_time": "2:19:37", "remaining_time": "0:42:08", "throughput": 13268.2, "total_tokens": 111149056}
54
+ {"current_steps": 54, "total_steps": 69, "loss": 0.5258, "lr": 5.607217732389503e-06, "epoch": 0.779783393501805, "percentage": 78.26, "elapsed_time": "2:22:14", "remaining_time": "0:39:30", "throughput": 13269.48, "total_tokens": 113246208}
55
+ {"current_steps": 55, "total_steps": 69, "loss": 0.5508, "lr": 4.9092221136255444e-06, "epoch": 0.7942238267148014, "percentage": 79.71, "elapsed_time": "2:24:51", "remaining_time": "0:36:52", "throughput": 13270.12, "total_tokens": 115343360}
56
+ {"current_steps": 56, "total_steps": 69, "loss": 0.5439, "lr": 4.252867700024374e-06, "epoch": 0.8086642599277978, "percentage": 81.16, "elapsed_time": "2:27:29", "remaining_time": "0:34:14", "throughput": 13270.24, "total_tokens": 117440512}
57
+ {"current_steps": 57, "total_steps": 69, "loss": 0.5261, "lr": 3.6395148863377858e-06, "epoch": 0.8231046931407943, "percentage": 82.61, "elapsed_time": "2:30:08", "remaining_time": "0:31:36", "throughput": 13270.03, "total_tokens": 119537664}
58
+ {"current_steps": 58, "total_steps": 69, "loss": 0.5518, "lr": 3.0704349399351435e-06, "epoch": 0.8375451263537906, "percentage": 84.06, "elapsed_time": "2:32:45", "remaining_time": "0:28:58", "throughput": 13270.36, "total_tokens": 121634816}
59
+ {"current_steps": 59, "total_steps": 69, "loss": 0.5444, "lr": 2.5468073659076e-06, "epoch": 0.851985559566787, "percentage": 85.51, "elapsed_time": "2:35:23", "remaining_time": "0:26:20", "throughput": 13270.7, "total_tokens": 123731968}
60
+ {"current_steps": 60, "total_steps": 69, "loss": 0.5469, "lr": 2.0697174623636794e-06, "epoch": 0.8664259927797834, "percentage": 86.96, "elapsed_time": "2:38:01", "remaining_time": "0:23:42", "throughput": 13270.96, "total_tokens": 125829120}
61
+ {"current_steps": 61, "total_steps": 69, "loss": 0.5335, "lr": 1.6401540709832242e-06, "epoch": 0.8808664259927798, "percentage": 88.41, "elapsed_time": "2:40:39", "remaining_time": "0:21:04", "throughput": 13271.26, "total_tokens": 127926272}
62
+ {"current_steps": 62, "total_steps": 69, "loss": 0.5367, "lr": 1.2590075274920205e-06, "epoch": 0.8953068592057761, "percentage": 89.86, "elapsed_time": "2:43:16", "remaining_time": "0:18:26", "throughput": 13272.14, "total_tokens": 130023424}
63
+ {"current_steps": 63, "total_steps": 69, "loss": 0.551, "lr": 9.270678163050217e-07, "epoch": 0.9097472924187726, "percentage": 91.3, "elapsed_time": "2:45:54", "remaining_time": "0:15:48", "throughput": 13272.46, "total_tokens": 132120576}
64
+ {"current_steps": 64, "total_steps": 69, "loss": 0.5597, "lr": 6.450229331630253e-07, "epoch": 0.924187725631769, "percentage": 92.75, "elapsed_time": "2:48:32", "remaining_time": "0:13:10", "throughput": 13272.79, "total_tokens": 134217728}
65
+ {"current_steps": 65, "total_steps": 69, "loss": 0.5369, "lr": 4.134574591564494e-07, "epoch": 0.9386281588447654, "percentage": 94.2, "elapsed_time": "2:51:09", "remaining_time": "0:10:31", "throughput": 13273.81, "total_tokens": 136314880}
66
+ {"current_steps": 66, "total_steps": 69, "loss": 0.5451, "lr": 2.3285134909173112e-07, "epoch": 0.9530685920577617, "percentage": 95.65, "elapsed_time": "2:53:45", "remaining_time": "0:07:53", "throughput": 13276.09, "total_tokens": 138412032}
67
+ {"current_steps": 67, "total_steps": 69, "loss": 0.5237, "lr": 1.0357893671171792e-07, "epoch": 0.9675090252707581, "percentage": 97.1, "elapsed_time": "2:56:20", "remaining_time": "0:05:15", "throughput": 13279.42, "total_tokens": 140509184}
68
+ {"current_steps": 68, "total_steps": 69, "loss": 0.5604, "lr": 2.590815883181108e-08, "epoch": 0.9819494584837545, "percentage": 98.55, "elapsed_time": "2:58:55", "remaining_time": "0:02:37", "throughput": 13283.18, "total_tokens": 142606336}
69
+ {"current_steps": 69, "total_steps": 69, "loss": 0.534, "lr": 0.0, "epoch": 0.9963898916967509, "percentage": 100.0, "elapsed_time": "3:01:30", "remaining_time": "0:00:00", "throughput": 13286.8, "total_tokens": 144703488}
70
+ {"current_steps": 69, "total_steps": 69, "epoch": 0.9963898916967509, "percentage": 100.0, "elapsed_time": "3:01:52", "remaining_time": "0:00:00", "throughput": 13260.92, "total_tokens": 144703488}
trainer_state.json ADDED
@@ -0,0 +1,595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9963898916967509,
5
+ "eval_steps": 500,
6
+ "global_step": 69,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01444043321299639,
13
+ "grad_norm": 0.9324310421943665,
14
+ "learning_rate": 4.9974091841168195e-05,
15
+ "loss": 0.8402,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.02888086642599278,
21
+ "grad_norm": 0.736538290977478,
22
+ "learning_rate": 4.9896421063288286e-05,
23
+ "loss": 0.7686,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.04332129963898917,
29
+ "grad_norm": 0.6694996953010559,
30
+ "learning_rate": 4.976714865090827e-05,
31
+ "loss": 0.7563,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.05776173285198556,
37
+ "grad_norm": 0.5700488090515137,
38
+ "learning_rate": 4.958654254084355e-05,
39
+ "loss": 0.7139,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.07220216606498195,
45
+ "grad_norm": 0.47626349329948425,
46
+ "learning_rate": 4.9354977066836986e-05,
47
+ "loss": 0.6793,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.08664259927797834,
53
+ "grad_norm": 0.4310459494590759,
54
+ "learning_rate": 4.907293218369499e-05,
55
+ "loss": 0.6631,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.10108303249097472,
61
+ "grad_norm": 0.41724854707717896,
62
+ "learning_rate": 4.874099247250798e-05,
63
+ "loss": 0.64,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.11552346570397112,
69
+ "grad_norm": 0.37938904762268066,
70
+ "learning_rate": 4.835984592901678e-05,
71
+ "loss": 0.6145,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1299638989169675,
77
+ "grad_norm": 0.30510303378105164,
78
+ "learning_rate": 4.793028253763633e-05,
79
+ "loss": 0.5997,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.1444043321299639,
85
+ "grad_norm": 0.17869406938552856,
86
+ "learning_rate": 4.74531926340924e-05,
87
+ "loss": 0.5896,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.1588447653429603,
93
+ "grad_norm": 0.1084759458899498,
94
+ "learning_rate": 4.6929565060064864e-05,
95
+ "loss": 0.6025,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.17328519855595667,
101
+ "grad_norm": 0.09031977504491806,
102
+ "learning_rate": 4.6360485113662216e-05,
103
+ "loss": 0.5644,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.18772563176895307,
109
+ "grad_norm": 0.08057376742362976,
110
+ "learning_rate": 4.574713229997563e-05,
111
+ "loss": 0.5558,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.20216606498194944,
117
+ "grad_norm": 0.0670362040400505,
118
+ "learning_rate": 4.509077788637446e-05,
119
+ "loss": 0.5705,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.21660649819494585,
125
+ "grad_norm": 0.06539376825094223,
126
+ "learning_rate": 4.43927822676105e-05,
127
+ "loss": 0.5694,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.23104693140794225,
133
+ "grad_norm": 0.05930742993950844,
134
+ "learning_rate": 4.365459214619214e-05,
135
+ "loss": 0.559,
136
+ "num_input_tokens_seen": 33554432,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.24548736462093862,
141
+ "grad_norm": 0.054464634507894516,
142
+ "learning_rate": 4.2877737533872485e-05,
143
+ "loss": 0.5628,
144
+ "num_input_tokens_seen": 35651584,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.259927797833935,
149
+ "grad_norm": 0.053172189742326736,
150
+ "learning_rate": 4.206382858046636e-05,
151
+ "loss": 0.5553,
152
+ "num_input_tokens_seen": 37748736,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.2743682310469314,
157
+ "grad_norm": 0.04865848645567894,
158
+ "learning_rate": 4.12145522365689e-05,
159
+ "loss": 0.5401,
160
+ "num_input_tokens_seen": 39845888,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.2888086642599278,
165
+ "grad_norm": 0.04852156713604927,
166
+ "learning_rate": 4.033166875709291e-05,
167
+ "loss": 0.575,
168
+ "num_input_tokens_seen": 41943040,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.30324909747292417,
173
+ "grad_norm": 0.046296387910842896,
174
+ "learning_rate": 3.941700805287168e-05,
175
+ "loss": 0.5398,
176
+ "num_input_tokens_seen": 44040192,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.3176895306859206,
181
+ "grad_norm": 0.04640813171863556,
182
+ "learning_rate": 3.8472465897889394e-05,
183
+ "loss": 0.5389,
184
+ "num_input_tokens_seen": 46137344,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.33212996389891697,
189
+ "grad_norm": 0.043006811290979385,
190
+ "learning_rate": 3.7500000000000003e-05,
191
+ "loss": 0.5451,
192
+ "num_input_tokens_seen": 48234496,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.34657039711191334,
197
+ "grad_norm": 0.04406141862273216,
198
+ "learning_rate": 3.6501625943278805e-05,
199
+ "loss": 0.5558,
200
+ "num_input_tokens_seen": 50331648,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.36101083032490977,
205
+ "grad_norm": 0.03994145616889,
206
+ "learning_rate": 3.547941301041661e-05,
207
+ "loss": 0.5403,
208
+ "num_input_tokens_seen": 52428800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.37545126353790614,
213
+ "grad_norm": 0.039348017424345016,
214
+ "learning_rate": 3.443547989381536e-05,
215
+ "loss": 0.5405,
216
+ "num_input_tokens_seen": 54525952,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.3898916967509025,
221
+ "grad_norm": 0.03861572593450546,
222
+ "learning_rate": 3.3371990304274656e-05,
223
+ "loss": 0.5577,
224
+ "num_input_tokens_seen": 56623104,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.4043321299638989,
229
+ "grad_norm": 0.03878667205572128,
230
+ "learning_rate": 3.2291148486370626e-05,
231
+ "loss": 0.5345,
232
+ "num_input_tokens_seen": 58720256,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.4187725631768953,
237
+ "grad_norm": 0.03664080426096916,
238
+ "learning_rate": 3.11951946498225e-05,
239
+ "loss": 0.5484,
240
+ "num_input_tokens_seen": 60817408,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.4332129963898917,
245
+ "grad_norm": 0.036824408918619156,
246
+ "learning_rate": 3.008640032631585e-05,
247
+ "loss": 0.5485,
248
+ "num_input_tokens_seen": 62914560,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.44765342960288806,
253
+ "grad_norm": 0.037150438874959946,
254
+ "learning_rate": 2.8967063661406285e-05,
255
+ "loss": 0.5299,
256
+ "num_input_tokens_seen": 65011712,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.4620938628158845,
261
+ "grad_norm": 0.03484778478741646,
262
+ "learning_rate": 2.7839504651261872e-05,
263
+ "loss": 0.539,
264
+ "num_input_tokens_seen": 67108864,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.47653429602888087,
269
+ "grad_norm": 0.035446375608444214,
270
+ "learning_rate": 2.6706060334116777e-05,
271
+ "loss": 0.5248,
272
+ "num_input_tokens_seen": 69206016,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.49097472924187724,
277
+ "grad_norm": 0.0350475013256073,
278
+ "learning_rate": 2.556907994640264e-05,
279
+ "loss": 0.5342,
280
+ "num_input_tokens_seen": 71303168,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.5054151624548736,
285
+ "grad_norm": 0.036621786653995514,
286
+ "learning_rate": 2.4430920053597356e-05,
287
+ "loss": 0.5431,
288
+ "num_input_tokens_seen": 73400320,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.51985559566787,
293
+ "grad_norm": 0.0347721092402935,
294
+ "learning_rate": 2.329393966588323e-05,
295
+ "loss": 0.5471,
296
+ "num_input_tokens_seen": 75497472,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.5342960288808665,
301
+ "grad_norm": 0.03457929939031601,
302
+ "learning_rate": 2.2160495348738123e-05,
303
+ "loss": 0.542,
304
+ "num_input_tokens_seen": 77594624,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.5487364620938628,
309
+ "grad_norm": 0.035683248192071915,
310
+ "learning_rate": 2.1032936338593718e-05,
311
+ "loss": 0.542,
312
+ "num_input_tokens_seen": 79691776,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.5631768953068592,
317
+ "grad_norm": 0.03531257063150406,
318
+ "learning_rate": 1.991359967368416e-05,
319
+ "loss": 0.542,
320
+ "num_input_tokens_seen": 81788928,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.5776173285198556,
325
+ "grad_norm": 0.034907545894384384,
326
+ "learning_rate": 1.8804805350177505e-05,
327
+ "loss": 0.5425,
328
+ "num_input_tokens_seen": 83886080,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.592057761732852,
333
+ "grad_norm": 0.03420661389827728,
334
+ "learning_rate": 1.7708851513629377e-05,
335
+ "loss": 0.5482,
336
+ "num_input_tokens_seen": 85983232,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.6064981949458483,
341
+ "grad_norm": 0.03401198983192444,
342
+ "learning_rate": 1.6628009695725346e-05,
343
+ "loss": 0.5598,
344
+ "num_input_tokens_seen": 88080384,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.6209386281588448,
349
+ "grad_norm": 0.03434673324227333,
350
+ "learning_rate": 1.5564520106184644e-05,
351
+ "loss": 0.5402,
352
+ "num_input_tokens_seen": 90177536,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.6353790613718412,
357
+ "grad_norm": 0.033791348338127136,
358
+ "learning_rate": 1.4520586989583406e-05,
359
+ "loss": 0.5413,
360
+ "num_input_tokens_seen": 92274688,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.6498194945848376,
365
+ "grad_norm": 0.03330031782388687,
366
+ "learning_rate": 1.3498374056721197e-05,
367
+ "loss": 0.556,
368
+ "num_input_tokens_seen": 94371840,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.6642599277978339,
373
+ "grad_norm": 0.03298752009868622,
374
+ "learning_rate": 1.2500000000000006e-05,
375
+ "loss": 0.5341,
376
+ "num_input_tokens_seen": 96468992,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.6787003610108303,
381
+ "grad_norm": 0.03363870084285736,
382
+ "learning_rate": 1.1527534102110612e-05,
383
+ "loss": 0.5436,
384
+ "num_input_tokens_seen": 98566144,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.6931407942238267,
389
+ "grad_norm": 0.032934173941612244,
390
+ "learning_rate": 1.0582991947128324e-05,
391
+ "loss": 0.5393,
392
+ "num_input_tokens_seen": 100663296,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.7075812274368231,
397
+ "grad_norm": 0.03438662365078926,
398
+ "learning_rate": 9.668331242907089e-06,
399
+ "loss": 0.5598,
400
+ "num_input_tokens_seen": 102760448,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.7220216606498195,
405
+ "grad_norm": 0.03351249918341637,
406
+ "learning_rate": 8.785447763431101e-06,
407
+ "loss": 0.5329,
408
+ "num_input_tokens_seen": 104857600,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.7364620938628159,
413
+ "grad_norm": 0.0330129936337471,
414
+ "learning_rate": 7.936171419533653e-06,
415
+ "loss": 0.5384,
416
+ "num_input_tokens_seen": 106954752,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.7509025270758123,
421
+ "grad_norm": 0.03433903306722641,
422
+ "learning_rate": 7.122262466127514e-06,
423
+ "loss": 0.5447,
424
+ "num_input_tokens_seen": 109051904,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.7653429602888087,
429
+ "grad_norm": 0.03314002603292465,
430
+ "learning_rate": 6.3454078538078635e-06,
431
+ "loss": 0.5291,
432
+ "num_input_tokens_seen": 111149056,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.779783393501805,
437
+ "grad_norm": 0.032993488013744354,
438
+ "learning_rate": 5.607217732389503e-06,
439
+ "loss": 0.5258,
440
+ "num_input_tokens_seen": 113246208,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.7942238267148014,
445
+ "grad_norm": 0.032629404217004776,
446
+ "learning_rate": 4.9092221136255444e-06,
447
+ "loss": 0.5508,
448
+ "num_input_tokens_seen": 115343360,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.8086642599277978,
453
+ "grad_norm": 0.03205695375800133,
454
+ "learning_rate": 4.252867700024374e-06,
455
+ "loss": 0.5439,
456
+ "num_input_tokens_seen": 117440512,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.8231046931407943,
461
+ "grad_norm": 0.03285016119480133,
462
+ "learning_rate": 3.6395148863377858e-06,
463
+ "loss": 0.5261,
464
+ "num_input_tokens_seen": 119537664,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.8375451263537906,
469
+ "grad_norm": 0.035063523799180984,
470
+ "learning_rate": 3.0704349399351435e-06,
471
+ "loss": 0.5518,
472
+ "num_input_tokens_seen": 121634816,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.851985559566787,
477
+ "grad_norm": 0.03116844967007637,
478
+ "learning_rate": 2.5468073659076e-06,
479
+ "loss": 0.5444,
480
+ "num_input_tokens_seen": 123731968,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.8664259927797834,
485
+ "grad_norm": 0.03255166485905647,
486
+ "learning_rate": 2.0697174623636794e-06,
487
+ "loss": 0.5469,
488
+ "num_input_tokens_seen": 125829120,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.8808664259927798,
493
+ "grad_norm": 0.03249025344848633,
494
+ "learning_rate": 1.6401540709832242e-06,
495
+ "loss": 0.5335,
496
+ "num_input_tokens_seen": 127926272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.8953068592057761,
501
+ "grad_norm": 0.03506583720445633,
502
+ "learning_rate": 1.2590075274920205e-06,
503
+ "loss": 0.5367,
504
+ "num_input_tokens_seen": 130023424,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.9097472924187726,
509
+ "grad_norm": 0.03293128311634064,
510
+ "learning_rate": 9.270678163050217e-07,
511
+ "loss": 0.551,
512
+ "num_input_tokens_seen": 132120576,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.924187725631769,
517
+ "grad_norm": 0.03347219526767731,
518
+ "learning_rate": 6.450229331630253e-07,
519
+ "loss": 0.5597,
520
+ "num_input_tokens_seen": 134217728,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.9386281588447654,
525
+ "grad_norm": 0.03135489672422409,
526
+ "learning_rate": 4.134574591564494e-07,
527
+ "loss": 0.5369,
528
+ "num_input_tokens_seen": 136314880,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.9530685920577617,
533
+ "grad_norm": 0.03153960779309273,
534
+ "learning_rate": 2.3285134909173112e-07,
535
+ "loss": 0.5451,
536
+ "num_input_tokens_seen": 138412032,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.9675090252707581,
541
+ "grad_norm": 0.03191647306084633,
542
+ "learning_rate": 1.0357893671171792e-07,
543
+ "loss": 0.5237,
544
+ "num_input_tokens_seen": 140509184,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.9819494584837545,
549
+ "grad_norm": 0.03295959159731865,
550
+ "learning_rate": 2.590815883181108e-08,
551
+ "loss": 0.5604,
552
+ "num_input_tokens_seen": 142606336,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.9963898916967509,
557
+ "grad_norm": 0.03191553056240082,
558
+ "learning_rate": 0.0,
559
+ "loss": 0.534,
560
+ "num_input_tokens_seen": 144703488,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.9963898916967509,
565
+ "num_input_tokens_seen": 144703488,
566
+ "step": 69,
567
+ "total_flos": 5.635565866281075e+18,
568
+ "train_loss": 0.5665888682655666,
569
+ "train_runtime": 10913.0245,
570
+ "train_samples_per_second": 3.247,
571
+ "train_steps_per_second": 0.006
572
+ }
573
+ ],
574
+ "logging_steps": 1,
575
+ "max_steps": 69,
576
+ "num_input_tokens_seen": 144703488,
577
+ "num_train_epochs": 1,
578
+ "save_steps": 500,
579
+ "stateful_callbacks": {
580
+ "TrainerControl": {
581
+ "args": {
582
+ "should_epoch_stop": false,
583
+ "should_evaluate": false,
584
+ "should_log": false,
585
+ "should_save": true,
586
+ "should_training_stop": true
587
+ },
588
+ "attributes": {}
589
+ }
590
+ },
591
+ "total_flos": 5.635565866281075e+18,
592
+ "train_batch_size": 16,
593
+ "trial_name": null,
594
+ "trial_params": null
595
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f89cedb3b4452c319d87072cbb65858846722f74c7a4b37d475becf73b8ac27
3
+ size 5688
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes3_query_filtered_330k_nlx
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: deepseek-ai/deepseek-coder-7b-instruct-v1.5
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek-nlx-330k
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: deepseekcoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED