push to hugging face
Browse files- .gradio/certificate.pem +31 -0
- README.md +29 -0
- app.py +135 -0
- requirements.txt +70 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SMS Spam Classifier
|
3 |
+
emoji: 📱
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.0.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# SMS Spam Classifier
|
13 |
+
|
14 |
+
This application uses a bidirectional LSTM model to classify SMS messages as either spam or legitimate (ham). Simply enter your text message, and the model will predict whether it's spam or not, along with a confidence score.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
1. Enter your text message in the input box
|
19 |
+
2. Click submit
|
20 |
+
3. The model will return its prediction (spam/ham) and confidence level
|
21 |
+
|
22 |
+
## Model
|
23 |
+
|
24 |
+
The classifier uses a bidirectional LSTM architecture with:
|
25 |
+
|
26 |
+
- Word embeddings
|
27 |
+
- 2 LSTM layers
|
28 |
+
- Dropout for regularization
|
29 |
+
- Dense layers with ReLU activation
|
app.py
CHANGED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import random_split
|
6 |
+
from collections import Counter
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
class LSTMClassifier(nn.Module):
|
11 |
+
def __init__(self, vocab_size, embedding_dim=200, hidden_dim=256):
|
12 |
+
super(LSTMClassifier, self).__init__()
|
13 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
14 |
+
|
15 |
+
self.lstm = nn.LSTM(
|
16 |
+
embedding_dim,
|
17 |
+
hidden_dim,
|
18 |
+
num_layers=2,
|
19 |
+
batch_first=True,
|
20 |
+
bidirectional=True,
|
21 |
+
dropout=0.3,
|
22 |
+
)
|
23 |
+
|
24 |
+
# Dropout layer
|
25 |
+
self.dropout = nn.Dropout(0.4)
|
26 |
+
|
27 |
+
# Additional dense layers
|
28 |
+
self.fc1 = nn.Linear(hidden_dim * 2, hidden_dim)
|
29 |
+
self.fc2 = nn.Linear(hidden_dim, 2)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
embedded = self.embedding(x)
|
33 |
+
|
34 |
+
lstm_out, (hidden, cell) = self.lstm(embedded)
|
35 |
+
|
36 |
+
# Concatenate forward and backward hidden states
|
37 |
+
hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)
|
38 |
+
hidden = self.dropout(hidden)
|
39 |
+
|
40 |
+
# Additional layer with ReLU activation
|
41 |
+
hidden = torch.relu(self.fc1(hidden))
|
42 |
+
hidden = self.dropout(hidden)
|
43 |
+
|
44 |
+
# Final classification layer
|
45 |
+
out = self.fc2(hidden)
|
46 |
+
return out
|
47 |
+
|
48 |
+
|
49 |
+
def create_vocabulary(ds, max_words=10000):
|
50 |
+
word2idx = {
|
51 |
+
"<PAD>": 0,
|
52 |
+
"<UNK>": 1,
|
53 |
+
}
|
54 |
+
words = []
|
55 |
+
for example in ds:
|
56 |
+
text = example["sms"]
|
57 |
+
text = text.lower()
|
58 |
+
text = re.sub(r"[^\w\s]", "", text)
|
59 |
+
words.extend(text.split())
|
60 |
+
|
61 |
+
word_counts = Counter(words)
|
62 |
+
common_words = word_counts.most_common(max_words - 2)
|
63 |
+
for word, _ in common_words:
|
64 |
+
word2idx[word] = len(word2idx)
|
65 |
+
|
66 |
+
return word2idx
|
67 |
+
|
68 |
+
|
69 |
+
def create_splits(ds):
|
70 |
+
# 80/20 split
|
71 |
+
full_dataset = ds['train']
|
72 |
+
train_size = int(0.8 * len(full_dataset))
|
73 |
+
test_size = len(full_dataset) - train_size
|
74 |
+
|
75 |
+
train_dataset, test_dataset = random_split(
|
76 |
+
full_dataset,
|
77 |
+
[train_size, test_size],
|
78 |
+
generator=torch.Generator().manual_seed(42),
|
79 |
+
)
|
80 |
+
return train_dataset, test_dataset
|
81 |
+
|
82 |
+
|
83 |
+
ds = load_dataset("ucirvine/sms_spam")
|
84 |
+
train_dataset, test_dataset = create_splits(ds)
|
85 |
+
vocab = create_vocabulary(train_dataset)
|
86 |
+
|
87 |
+
# First recreate the model architecture
|
88 |
+
model = LSTMClassifier(len(vocab), 100)
|
89 |
+
# Load the saved state dict
|
90 |
+
model.load_state_dict(torch.load('best_model.pth'))
|
91 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
92 |
+
|
93 |
+
model = model.to(device)
|
94 |
+
|
95 |
+
|
96 |
+
def predict_text(model, text, word2idx, device, max_length=50):
|
97 |
+
# Set model to evaluation mode
|
98 |
+
model.eval()
|
99 |
+
|
100 |
+
# Preprocess the text (same as training)
|
101 |
+
text = text.lower()
|
102 |
+
words = text.split()
|
103 |
+
|
104 |
+
# Convert words to indices
|
105 |
+
indices = [word2idx.get(word, word2idx['<UNK>']) for word in words]
|
106 |
+
|
107 |
+
# Pad or truncate
|
108 |
+
if len(indices) < max_length:
|
109 |
+
indices += [word2idx['<PAD>']] * (max_length - len(indices))
|
110 |
+
else:
|
111 |
+
indices = indices[:max_length]
|
112 |
+
|
113 |
+
# Convert to tensor
|
114 |
+
with torch.no_grad():
|
115 |
+
input_tensor = torch.tensor(indices).unsqueeze(
|
116 |
+
0).to(device) # Add batch dimension
|
117 |
+
outputs = model(input_tensor)
|
118 |
+
probabilities = torch.softmax(outputs, dim=1)
|
119 |
+
prediction = torch.argmax(outputs, dim=1)
|
120 |
+
|
121 |
+
return {
|
122 |
+
'prediction': 'spam' if prediction.item() == 1 else 'ham',
|
123 |
+
'confidence': probabilities[0][prediction].item()
|
124 |
+
}
|
125 |
+
|
126 |
+
|
127 |
+
interface = gr.Interface(
|
128 |
+
fn=lambda text: predict_text(model, text, vocab, device),
|
129 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
130 |
+
outputs=gr.Textbox(),
|
131 |
+
title="SMS Spam Classifier",
|
132 |
+
description="Enter a text message to predict if it's spam or ham.",
|
133 |
+
)
|
134 |
+
|
135 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
aiohappyeyeballs==2.6.1
|
3 |
+
aiohttp==3.11.14
|
4 |
+
aiosignal==1.3.2
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.9.0
|
7 |
+
attrs==25.3.0
|
8 |
+
certifi==2025.1.31
|
9 |
+
charset-normalizer==3.4.1
|
10 |
+
click==8.1.8
|
11 |
+
datasets==3.4.1
|
12 |
+
dill==0.3.8
|
13 |
+
fastapi==0.115.12
|
14 |
+
ffmpy==0.5.0
|
15 |
+
filelock==3.18.0
|
16 |
+
frozenlist==1.5.0
|
17 |
+
fsspec==2024.12.0
|
18 |
+
gradio==5.23.1
|
19 |
+
gradio_client==1.8.0
|
20 |
+
groovy==0.1.2
|
21 |
+
h11==0.14.0
|
22 |
+
httpcore==1.0.7
|
23 |
+
httpx==0.28.1
|
24 |
+
huggingface-hub==0.29.3
|
25 |
+
idna==3.10
|
26 |
+
Jinja2==3.1.6
|
27 |
+
markdown-it-py==3.0.0
|
28 |
+
MarkupSafe==3.0.2
|
29 |
+
mdurl==0.1.2
|
30 |
+
mpmath==1.3.0
|
31 |
+
multidict==6.2.0
|
32 |
+
multiprocess==0.70.16
|
33 |
+
networkx==3.4.2
|
34 |
+
numpy==2.2.4
|
35 |
+
orjson==3.10.16
|
36 |
+
packaging==24.2
|
37 |
+
pandas==2.2.3
|
38 |
+
pillow==11.1.0
|
39 |
+
propcache==0.3.1
|
40 |
+
pyarrow==19.0.1
|
41 |
+
pydantic==2.10.6
|
42 |
+
pydantic_core==2.27.2
|
43 |
+
pydub==0.25.1
|
44 |
+
Pygments==2.19.1
|
45 |
+
python-dateutil==2.9.0.post0
|
46 |
+
python-multipart==0.0.20
|
47 |
+
pytz==2025.2
|
48 |
+
PyYAML==6.0.2
|
49 |
+
requests==2.32.3
|
50 |
+
rich==13.9.4
|
51 |
+
ruff==0.11.2
|
52 |
+
safehttpx==0.1.6
|
53 |
+
semantic-version==2.10.0
|
54 |
+
shellingham==1.5.4
|
55 |
+
six==1.17.0
|
56 |
+
sniffio==1.3.1
|
57 |
+
starlette==0.46.1
|
58 |
+
sympy==1.13.1
|
59 |
+
tomlkit==0.13.2
|
60 |
+
torch==2.6.0
|
61 |
+
torchvision==0.21.0
|
62 |
+
tqdm==4.67.1
|
63 |
+
typer==0.15.2
|
64 |
+
typing_extensions==4.13.0
|
65 |
+
tzdata==2025.2
|
66 |
+
urllib3==2.3.0
|
67 |
+
uvicorn==0.34.0
|
68 |
+
websockets==15.0.1
|
69 |
+
xxhash==3.5.0
|
70 |
+
yarl==1.18.3
|