gemma-3-4b-it-speech / examples /finetune_speech.py
junnei's picture
Upload finetune_speech.py
2c3732b verified
raw
history blame contribute delete
28.6 kB
import argparse
import json
import os
from pathlib import Path
import numpy as np
import torch
import sacrebleu
from datasets import load_dataset
from torch.utils.data import Dataset, ConcatDataset
from tqdm import tqdm
from transformers import (
AutoProcessor,
AutoModel,
BatchFeature,
Trainer,
TrainingArguments,
StoppingCriteria,
StoppingCriteriaList,
)
from collections import defaultdict
import soundfile as sf
from datasets import Audio
import random
class BaseAudioDataset(Dataset):
def __init__(self, processor, split, sampling_rate=16000, debug=False):
self.processor = processor
self.training = "train" in split
self.debug = debug
self.sampling_rate = sampling_rate
self.name = ""
def set_dataset_name(self, name):
self.name = name
@staticmethod
def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
original_size = len(data)
data = data.cast_column(audio_field, Audio(decode=False))
def identify_corrupted_files(example):
try:
sf.read(example[audio_field]["path"])
for field in text_fields:
if field in example and example[field].replace('"', '') == "":
return False
return True
except Exception:
return False
data = data.filter(identify_corrupted_files, num_proc=16)
validated_size = len(data)
# Audio Decoding
data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
if debug:
print(f"Dataset: {dataset_name}")
print(f"Original data nums: {original_size}")
print(f"After filtering data nums: {validated_size}")
print(f"Filtering ratio: {validated_size/original_size:.2%}")
return data
@staticmethod
def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
original_size = len(data)
def filter_audio_by_length(example):
try:
audio = example[audio_field]['array']
channel = 1
if hasattr(audio, 'ndim') and audio.ndim > 1:
channel = audio.ndim
audio = audio.squeeze()
audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
return min_sec <= audio_length <= max_sec
except Exception as e:
if debug:
print(f"Error : {str(e)[:100]}... - sample excluded")
return False
data = data.filter(filter_audio_by_length, num_proc=16)
filtered_size = len(data)
if debug:
print(f"Before Length Filtering data nums: {original_size}")
print(f"After Length Filtering data nums: {filtered_size}")
print(f"Filtering ratio: {filtered_size/original_size:.2%}")
return data
def prepare_model_inputs(self, audio_array, instruction, answer_text):
user_message = {
'role': 'user',
'content': '<start_of_audio>' + instruction,
}
prompt = self.processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
)
inputs = self.processor(
text=prompt,
audio=[audio_array],
add_special_tokens=False,
return_tensors='pt'
)
answer = f"{answer_text}{ANSWER_SUFFIX}"
answer_ids = self.processor.tokenizer(answer, add_special_tokens=False, return_tensors='pt').input_ids
if self.debug:
self.debug = False
task_type = 'AST' if hasattr(self, 'ast') and self.ast else 'ASR'
lang_info = f" - {self.lang}" if hasattr(self, 'lang') else ""
print(f"{task_type}{lang_info}\nPROMPT: {prompt}\nINPUT: {self.processor.decode(inputs.input_ids[0], skip_special_tokens=False)}\nANSWER: {self.processor.decode(answer_ids[0], skip_special_tokens=False)}\n")
print(f"INPUT_MODE: {inputs.input_modes[0].item()}")
if self.training:
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
labels = torch.full_like(input_ids, _IGNORE_INDEX)
labels[:, -answer_ids.shape[1]:] = answer_ids
padding = torch.zeros((inputs.token_type_ids.shape[0], answer_ids.shape[1]))
token_type_ids = torch.cat([inputs.token_type_ids, padding], dim=1)
else:
input_ids = inputs.input_ids
labels = answer_ids
token_type_ids = inputs.token_type_ids
return {
'input_ids': input_ids,
'labels': labels,
'token_type_ids': token_type_ids,
'input_audio_embeds': inputs.input_audio_embeds,
'audio_embed_sizes': inputs.audio_embed_sizes,
'input_modes': inputs.input_modes,
}
# CoVoST2 Dataset Class
class CoVoSTDataset(BaseAudioDataset):
def __init__(self, processor, data_dir, split, ast=False,
lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("CoVoST")
self.ast = ast
self.lang = lang[0]
self.data = load_dataset("junnei/covost2",
lang[0],
data_dir=data_dir,
split=split,
trust_remote_code=True
)
text_fields = ["sentence", "translation"] if ast else ["sentence"]
self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["ast"]).format(lang[1]) if ast else random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
if self.ast:
answer_text = data["translation"]
else:
answer_text = data["sentence"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Zeroth Korean Dataset Class
class ZerothKoreanDataset(BaseAudioDataset):
def __init__(self, processor, split, sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("Zeroth")
# only ASR
self.ast = False
self.lang = "ko"
# load dataset
self.data = load_dataset("Bingsu/zeroth-korean",
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
# Zeroth Korean is only for ASR
answer_text = data["text"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Libri Speech Dataset Class
class LibriSpeechDataset(BaseAudioDataset):
def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name(f"LibriSpeech_{subset}")
# only ASR
self.ast = False
self.lang = "en"
# load dataset
self.data = load_dataset("fixie-ai/librispeech_asr",
subset,
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
# Libri Speech is only for ASR
answer_text = data["text"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Fleurs Dataset Class
class FleursDataset(BaseAudioDataset):
def __init__(self, processor, split, source_lang, target_lang=None,
mode="asr", sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("Fleurs")
# Mode Setting (ASR or AST)
if mode not in ["asr", "ast"]:
raise ValueError("mode must be 'asr' or 'ast'.")
self.mode = mode
self.ast = (mode == "ast")
self.source_lang = source_lang
# Language name mapping (expand if needed)
self.lang_names = {
'en_us': 'English', 'ko_kr': 'Korean'
}
# load dataset - source language dataset
self.data = load_dataset("google/fleurs",
source_lang,
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# When AST mode, load target language dataset.
if self.ast:
if target_lang is None:
raise ValueError("AST mode requires target_lang.")
self.target_lang = target_lang
self.lang = f"{source_lang}_{target_lang}"
# load dataset - target language dataset (for translation)
target_data = load_dataset("google/fleurs",
target_lang,
split=split,
trust_remote_code=True
)
source_dict = {item['id']: item for item in self.data}
target_dict = {item['id']: item for item in target_data}
# only Common ID, add translation fields
common_ids = set(source_dict.keys()) & set(target_dict.keys())
print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
self.data = [
{**source_dict[id], 'translation': target_dict[id]['transcription']}
for id in common_ids
]
# Instruction Setting - use target language name
target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
self.instruction = random.choice(INSTRUCTION["ast"]).format(target_lang_name)
else:
# ASR mode
self.lang = source_lang
self.instruction = random.choice(INSTRUCTION["asr"])
if self.debug:
print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
if self.ast:
print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
print(f"dataset size: {len(self.data)}")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
audio_array = data["audio"]["array"]
if self.ast:
answer_text = data["translation"]
else:
answer_text = data["transcription"]
return self.prepare_model_inputs(
audio_array,
self.instruction,
answer_text
)
def covost_collate_fn(batch):
input_ids_list = []
labels_list = []
token_type_ids_list = []
input_audio_embeds_list = []
audio_embed_sizes_list = []
audio_attention_mask_list = []
input_modes_list = []
for inputs in batch:
input_ids_list.append(inputs['input_ids'][0])
labels_list.append(inputs['labels'][0])
token_type_ids_list.append(inputs['token_type_ids'][0])
input_audio_embeds_list.append(inputs['input_audio_embeds'])
audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
audio_attention_mask_list.append(
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
)
input_modes_list.append(inputs['input_modes'])
try:
token_type_ids = pad_sequence(token_type_ids_list, padding_side='left', padding_value=0)
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
labels = pad_sequence(labels_list, padding_side='left', padding_value=0)
audio_attention_mask = (
pad_sequence(audio_attention_mask_list, padding_side='left', padding_value=False)
if len(audio_attention_mask_list) > 1
else None
)
except Exception as e:
print(e)
print(input_ids_list)
print(labels_list)
raise
attention_mask = (input_ids != 0).long()
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
audio_embed_sizes = torch.cat(audio_embed_sizes_list)
input_modes = torch.cat(input_modes_list)
return BatchFeature(
{
'input_ids': input_ids,
'labels': labels,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
'input_audio_embeds': input_audio_embeds,
'audio_embed_sizes': audio_embed_sizes,
'audio_attention_mask': audio_attention_mask,
'input_modes': input_modes,
}
)
def pad_sequence(sequences, padding_side='left', padding_value=0):
"""
Pad a list of sequences to the same length.
sequences: list of tensors in [seq_len, *] shape
"""
assert padding_side in ['right', 'left']
max_size = sequences[0].size()
trailing_dims = max_size[1:]
max_len = max(len(seq) for seq in sequences)
batch_size = len(sequences)
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
for i, seq in enumerate(sequences):
length = seq.size(0)
if padding_side == 'right':
output.data[i, :length] = seq
else:
output.data[i, -length:] = seq
return output
def cat_with_pad(tensors, dim, padding_value=0):
"""
cat along dim, while pad to max for all other dims
"""
ndim = tensors[0].dim()
assert all(
t.dim() == ndim for t in tensors[1:]
), 'All tensors must have the same number of dimensions'
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
out_size[dim] = sum(t.shape[dim] for t in tensors)
output = tensors[0].new_full(out_size, padding_value)
index = 0
for t in tensors:
# Create a slice list where every dimension except dim is full slice
slices = [slice(0, t.shape[d]) for d in range(ndim)]
# Update only the concat dimension slice
slices[dim] = slice(index, index + t.shape[dim])
output[slices] = t
index += t.shape[dim]
return output
def count_parameters_by_module(model):
# dictionary for parameters number by modules
module_params = defaultdict(lambda: {"total": 0, "trainable": 0})
# all params
total_params = 0
total_trainable_params = 0
# Check Embedding Token masks
embedding_masks = {}
for name, param in model.named_parameters():
if 'embed_tokens.weight' in name and hasattr(param, '_backward_hooks') and param._backward_hooks:
# check if params has embedding_grad_mask_hook
for hook_id, hook_fn in param._backward_hooks.items():
if hook_fn.__code__.co_name == 'embedding_grad_mask_hook':
# Accessing mask variables in the closure of hook functions
for cell in hook_fn.__closure__ or []:
if isinstance(cell.cell_contents, torch.Tensor) and cell.cell_contents.dtype == torch.bool:
# check mask tensor
embedding_masks[name] = ~cell.cell_contents # True : Trainable
# Count params by modules
for name, param in model.named_parameters():
# extracts top module_name
module_name = name.split('.')[0]
param_count = param.numel()
module_params[module_name]["total"] += param_count
total_params += param_count
if param.requires_grad:
# Only count for real trainable params. (with masks)
if name in embedding_masks:
trainable_count = embedding_masks[name].sum().item()
module_params[module_name]["trainable"] += trainable_count
total_trainable_params += trainable_count
else:
module_params[module_name]["trainable"] += param_count
total_trainable_params += param_count
print(f"All Params: {total_params:,}")
print(f"Trainable Params: {total_trainable_params:,} ({total_trainable_params/total_params*100:.2f}%)")
print("\nParams by Module:")
for module_name, counts in sorted(module_params.items()):
trainable_percentage = counts["trainable"] / counts["total"] * 100 if counts["total"] > 0 else 0
total_percentage = counts["total"] / total_params * 100
print(f"- {module_name}:")
print(f" Total: {counts['total']:,} ({total_percentage:.2f}% of model)")
print(f" Trainable: {counts['trainable']:,} ({trainable_percentage:.2f}% of module)")
return module_params
def create_model(model_name_or_path, revision="main", use_flash_attention = False):
model = AutoModel.from_pretrained(
model_name_or_path,
revision=revision,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2" if use_flash_attention else "eager",
trust_remote_code=True,
)
# Set use_cache to False after model loaded
model.config.use_cache = False
# Freeze all parameters
for param in model.parameters():
param.requires_grad = False
model.set_lora_adapter('speech')
model.to(torch.bfloat16)
# (Optional) unfreeze audio_tower parameters
#for param in model.audio_tower.parameters():
# param.requires_grad = True
# Only unfreeze audio_projector parameters
for param in model.audio_projector.parameters():
param.requires_grad = True
# (Optional) unfreeze audio embed_tokens
train_embed = True
if train_embed:
embed_tokens = model.language_model.model.model.embed_tokens
embed_tokens.weight.requires_grad = False
# Added Speech token IDs (only this tokens be trainable)
trainable_token_ids = [256001, 256002]
embed_tokens.weight.requires_grad = True
mask = torch.ones_like(embed_tokens.weight, dtype=torch.bool)
mask[trainable_token_ids] = False # Trainable Tokens are False (unfreeze), else True (freeze)
# backward hook, with gradient masking
def embedding_grad_mask_hook(grad):
return grad.masked_fill(mask, 0)
embed_tokens.weight.register_hook(embedding_grad_mask_hook)
model.language_model.model.model.embed_tokens = embed_tokens
count_parameters_by_module(model)
return model
os.environ["TOKENIZERS_PARALLELISM"] = "false"
INSTRUCTION = {
"ast": [
"Translate the audio to {0}.",
"Translate the audio clip into {0}.",
"Based on the attached audio, generate a comprehensive {0} translation of the spoken content.",
"Translate the provided audio file into {0}.",
"Convert the audio speech to {0} text.",
"Write an {0} translation of the audio file.",
"Translate spoken words from the audio into {0}.",
"Create an {0} version of the audio content.",
"Produce an accurate {0} translation of the audio.",
"Extract speech from the audio and translate it to {0}.",
"Turn the audio into readable {0} text.",
"Write all spoken content from the audio in {0}.",
"Generate an {0} translation of the speech in the file.",
"Convert the recording into {0} text.",
"Accurately translate the audio recording to {0}.",
"Write down dialogue from the given audio in {0}.",
"Translate all speech in this audio file to {0}.",
"Create an accurate {0} version of the speech.",
"Perform a complete {0} translation of the audio."
],
"asr": [
"Transcribe the audio clip into text.",
"Based on the attached audio, generate a comprehensive text transcription of the spoken content.",
"Transcribe the provided audio file into text.",
"Convert the audio speech to text.",
"Write a transcript of the audio file.",
"Transcribe spoken words from the audio.",
"Create a text version of the audio content.",
"Produce a verbatim transcript of the audio.",
"Extract and transcribe speech from the audio.",
"Turn the audio into readable text.",
"Write all spoken words from the audio.",
"Generate a transcript of the speech in the file.",
"Convert the recording into a text transcript.",
"Accurately transcribe the audio recording.",
"Write down dialogue from the given audio.",
"Transcribe all speech in this audio file.",
"Create an accurate text version of the speech.",
"Perform a complete transcription of the audio."
],
}
ANSWER_SUFFIX = "<end_of_turn>"
_IGNORE_INDEX = -100
model_name_or_path = 'junnei/gemma-3-4b-it-speech'
use_flash_attention = True
output_dir = '/workspace/output'
batch_size = 128
batch_size_per_gpu = 32
learning_rate = 4.0e-5 # 1.0e-4 for fine-tuning
wd = 0.01
num_train_epochs = 5
revision = "main" #"v1.0"
processor = AutoProcessor.from_pretrained(
model_name_or_path,
revision=revision,
trust_remote_code=True,
)
model = create_model(
model_name_or_path,
revision=revision,
use_flash_attention=use_flash_attention,
)
train_datasets = []
# Covost ASR mode (English -> English text)
covost_asr_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/EN",
split="train",
ast=False,
lang=("en_ko", "Korean")
)
train_datasets.append(covost_asr_dataset)
# Covost AST mode (English -> Korean text)
covost_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/EN",
split="train",
ast=True,
lang=("en_ko", "Korean")
)
train_datasets.append(covost_dataset)
# Libri Speech Clean ASR mode (English -> English text)
libri_speech_clean = LibriSpeechDataset(
processor=processor,
subset="clean",
split="train.360"
)
train_datasets.append(libri_speech_clean)
# Libri Speech Other ASR mode (English -> English text)
libri_speech_other = LibriSpeechDataset(
processor=processor,
subset="other",
split="train.500"
)
train_datasets.append(libri_speech_other)
# Fleurs ASR mode (English -> English text)
en_asr_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="en_us", # English
mode="asr"
)
train_datasets.append(en_asr_fleurs)
# Fleurs AST mode (English -> Korean text)
en_ko_ast_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="en_us", # English
target_lang="ko_kr", # Korean
mode="ast"
)
train_datasets.append(en_ko_ast_fleurs)
# Covost ASR mode (Korean -> Korean text)
covost_ko_asr_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/ko",
split="train",
ast=False,
lang=("ko_en", "English")
)
train_datasets.append(covost_ko_asr_dataset)
# Covost AST mode (Korean -> English text)
covost_ko_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/ko",
split="train",
ast=True,
lang=("ko_en", "English")
)
train_datasets.append(covost_ko_dataset)
# Zeroth ASR mode (Korean -> Korean text)
ko_asr_zeroth = ZerothKoreanDataset(
processor=processor,
split="train"
)
train_datasets.append(ko_asr_zeroth)
# Fleurs ASR mode (Korean -> Korean text)
ko_asr_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="ko_kr", # Korean
mode="asr"
)
train_datasets.append(ko_asr_fleurs)
# Fleurs AST mode (Korean -> English text)
ko_en_ast_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="ko_kr", # Korean
target_lang="en_us", # English
mode="ast"
)
train_datasets.append(ko_en_ast_fleurs)
print("Count Num of Datasets", len(train_datasets))
print([len(dataset) for dataset in train_datasets])
# ConcatDataset
train_dataset = ConcatDataset(train_datasets) if len(train_datasets) > 1 else train_datasets[0]
print("Count Length of Datas", len(train_dataset))
# Check GPUs
num_gpus = torch.cuda.device_count()
print(f'training on {num_gpus} GPUs')
assert (
batch_size % (num_gpus * batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = batch_size // (num_gpus * batch_size_per_gpu)
# hard coded training args
training_args = TrainingArguments(
num_train_epochs=num_train_epochs,
per_device_train_batch_size=batch_size_per_gpu,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
gradient_accumulation_steps=gradient_accumulation_steps,
optim='adamw_torch',
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-7,
learning_rate=learning_rate,
weight_decay=wd,
max_grad_norm=1.0,
lr_scheduler_type='cosine',
warmup_steps=50,
logging_steps=50,
output_dir=output_dir,
save_strategy='no',
save_total_limit=10,
save_only_model=True,
bf16=True,
fp16=False,
remove_unused_columns=False,
report_to='none',
deepspeed=None,
disable_tqdm=False,
dataloader_num_workers=4,
ddp_find_unused_parameters=True,
)
out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)
# create optimizer only for trainable params
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=learning_rate,
weight_decay=wd,
betas=(0.9, 0.95),
eps=1e-7,
)
# Trainer Setting
trainer = Trainer(
model=model,
args=training_args,
data_collator=covost_collate_fn,
train_dataset=train_dataset,
optimizers=(optimizer, None),
)
trainer.train()
import shutil
# 1. Save LoRA Adapter
model.language_model.model.save_pretrained(output_dir)
# 1-1. Delete Markdown file
markdown_file = os.path.join(output_dir, "README.md")
if os.path.exists(markdown_file):
os.remove(markdown_file)
# 2. Save entire model
model.save_pretrained(output_dir)
# 3. Cleanup Memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()
from huggingface_hub import HfApi, login, create_repo, Repository, upload_folder
upload_dir = "/workspace/upload"
# 4. Clone Repo
repo_id = "junnei/gemma-3-4b-it-speech"
branch_name = "main" # 새 브랜치 이름
repo = Repository(local_dir=upload_dir, clone_from = repo_id)
repo.git_checkout(branch_name, create_branch_ok=True)
# 4-1. Move Trained model to Repo
for item in os.listdir(output_dir):
s = os.path.join(output_dir, item)
d = os.path.join(upload_dir, item)
if os.path.isdir(s):
shutil.copytree(s, d, dirs_exist_ok=True)
else:
shutil.copy2(s, d)