jina-reranker-m0 / modeling.py
numb3r3's picture
fix logit bias
f2aa0b2 verified
import torch
from torch import nn
import numpy as np
from typing import Optional, Tuple, List, Union
from transformers import Qwen2VLForConditionalGeneration
import logging
import warnings
from PIL import Image
from transformers.image_utils import load_image
logger = logging.getLogger(__name__)
LOGIT_BIAS = 2.65 # logit bias for sigmoid normalization
def load_images(images, lazy_load: bool = True):
# Disable PIL DecompositionBomb threshold for reading large images.
pil_max_px = Image.MAX_IMAGE_PIXELS
Image.MAX_IMAGE_PIXELS = None
images_batch = []
for image in images:
if isinstance(image, Image.Image):
images_batch.append(image)
else:
pil_image = load_image(image)
if lazy_load:
images_batch.append(pil_image)
else:
# avoid Too many open files error
images_batch.append(pil_image.copy())
pil_image.close()
Image.MAX_IMAGE_PIXELS = pil_max_px
return images_batch
def formatting_prompts_func(
query: str,
doc: str,
query_type: str = 'text',
doc_type: str = 'text',
prefix_str: str = '',
) -> str:
"""
Format prompts for different combinations of query and content types.
Args:
query: Query text or image path
doc: Content text or image path
query_type: Whether query is an image
doc_type: Whether content is an image
prefix_str: Optional prefix string to add
"""
# Format query part
if query_type == 'image':
query_part = "**Query**:\n<|vision_start|><|image_pad|><|vision_end|>"
else:
query_part = f"**Query**:\n{query}"
# Format content part
if doc_type == 'image':
doc_part = "**Document**:\n<|vision_start|><|image_pad|><|vision_end|>"
else:
doc_part = f"**Document**:\n{doc}"
# Combine parts
prompt = doc_part + '\n' + query_part
# Add prefix if provided
if prefix_str:
prompt = prefix_str + '\n' + prompt
return prompt
class JinaVLForRanking(Qwen2VLForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
self.padding_side = "left"
self.num_labels = 1 # config.num_labels
# hack the lm_head to do nothing, since we only want the hidden states
self.lm_head = nn.Identity()
# copy the idea from `Qwen2ForRewardModel` to have a MLP layer to get the final score
self.score = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size),
nn.ReLU(),
nn.Linear(config.hidden_size, self.num_labels),
)
# Initialize weights and apply final processing
self.post_init()
self.score_token_id = 100
def forward(self, *args, **kwargs) -> torch.Tensor:
# Delete output_hidden_states from kwargs
kwargs.pop("output_hidden_states", None)
kwargs.pop("use_cache", None)
assert kwargs.pop("labels", None) is None, "labels should not be passed to forward()"
outputs = super().forward(
*args,
use_cache=False,
output_hidden_states=True,
**kwargs,
)
# get the hidden states of the last layer
hidden_states = outputs.hidden_states[-1]
# IMPORTANT: the padding token must be on the left side
# get the hidden states of the last token and apply the linear layer
pooled_logits = self.score(hidden_states[:, -1])
return pooled_logits.squeeze(-1)
@torch.no_grad()
def compute_score(
self,
pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
batch_size: int = 8,
max_length: int = 10240,
max_query_length: int = 512,
max_doc_length: Optional[int] = None,
query_type: str = 'text',
doc_type: str = 'text',
normalize_scores: bool = True,
show_progress: bool = False,
) -> List[float]:
if not hasattr(self, "_processor"):
from transformers import AutoProcessor
self._processor = AutoProcessor.from_pretrained(
self.name_or_path, max_pixels=602112, min_pixels=3136, trust_remote_code=True
)
assert isinstance(pairs, list)
if isinstance(pairs[0], str):
pairs = [pairs]
max_length = max_length or self.config.max_length
if max_doc_length is None:
max_doc_length = max(max_length - max_query_length, max_query_length)
if max_doc_length < max_query_length:
warnings.warn(
f"max_doc_length={max_doc_length} should be greater than max_query_length={max_query_length}"
)
assert (
max_doc_length + max_query_length <= max_length
), f"max_doc_length ({max_doc_length}) + max_query_length ({max_query_length}) should be less than max_length ({max_length})"
max_length = max_length - 1
all_scores = []
device = next(self.parameters()).device
batch_iter = range(0, len(pairs), batch_size)
if show_progress:
from tqdm import trange
batch_iter = trange(0, len(pairs), batch_size, desc="Computing scores")
for start_index in batch_iter:
mini_batch = pairs[start_index : start_index + batch_size]
batch_inputs = []
for q, d in mini_batch:
# TEMP FIX: Truncate long documents
if doc_type == 'text':
tokens = self._processor.tokenizer(d, truncation=True, max_length=max_doc_length)
if len(tokens['input_ids']) >= max_doc_length:
d = self._processor.tokenizer.decode(tokens['input_ids'])
batch_inputs.append(formatting_prompts_func(q, d, query_type=query_type, doc_type=doc_type))
batch_images = None
# if doc_type == 'image':
# batch_images = load_images([d for (q, d) in mini_batch])
# elif query_type == 'image':
# batch_images = load_images([q for (q, d) in mini_batch])
doc_images = []
query_images = []
if doc_type == 'image':
doc_images = load_images([d for (q, d) in mini_batch])
if query_type == 'image':
query_images = load_images([q for (q, d) in mini_batch])
if len(doc_images) == len(query_images) and len(doc_images) > 0:
batch_images = [[d, q] for q, d in zip(query_images, doc_images)]
elif len(doc_images) > 0:
batch_images = doc_images
elif len(query_images) > 0:
batch_images = query_images
batch = self._processor(
text=batch_inputs,
images=batch_images,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
)
# append the reward token to the input_ids and attention_mask
batch_size = batch["input_ids"].size(0)
batch["input_ids"] = torch.cat(
[
batch["input_ids"],
torch.full((batch_size, 1), self.score_token_id, device=batch["input_ids"].device),
],
dim=1,
)
batch["attention_mask"] = torch.cat(
[
batch["attention_mask"],
torch.ones((batch_size, 1), device=batch["attention_mask"].device),
],
dim=1,
)
# move the batch to the correct device
batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
scores = self.forward(**batch).view(-1).cpu().float().numpy()
# normalize scores to [0, 1] with sigmoid with a scale
scores = 1.0 / (1.0 + np.exp(-(scores - LOGIT_BIAS)))
all_scores.extend(scores.tolist())
if len(all_scores) == 1:
return all_scores[0]
return all_scores