|
import copy |
|
import os |
|
import unittest |
|
|
|
import torch |
|
from torch import nn, optim |
|
|
|
from tests import get_tests_input_path |
|
from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig |
|
from TTS.tts.configs.tacotron_config import TacotronConfig |
|
from TTS.tts.layers.losses import L1LossMasked |
|
from TTS.tts.models.tacotron import Tacotron |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
|
|
torch.manual_seed(1) |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
config_global = TacotronConfig(num_chars=32, num_speakers=5, out_channels=513, decoder_output_dim=80) |
|
|
|
ap = AudioProcessor(**config_global.audio) |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
|
|
|
|
def count_parameters(model): |
|
r"""Count number of trainable parameters in a network""" |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
class TacotronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
config = config_global.copy() |
|
config.use_speaker_embedding = False |
|
config.num_speakers = 1 |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) |
|
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) |
|
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) |
|
mel_lengths[-1] = mel_spec.size(1) |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()) :, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron(config).to(device) |
|
model.train() |
|
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=config.lr) |
|
for _ in range(5): |
|
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) |
|
optimizer.zero_grad() |
|
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) |
|
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) |
|
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
|
|
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
|
|
class MultiSpeakeTacotronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
config = config_global.copy() |
|
config.use_speaker_embedding = True |
|
config.num_speakers = 5 |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) |
|
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) |
|
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) |
|
mel_lengths[-1] = mel_spec.size(1) |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()) :, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
config.d_vector_dim = 55 |
|
model = Tacotron(config).to(device) |
|
model.train() |
|
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=config.lr) |
|
for _ in range(5): |
|
outputs = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} |
|
) |
|
optimizer.zero_grad() |
|
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) |
|
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) |
|
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
|
|
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
|
|
class TacotronGSTTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
config = config_global.copy() |
|
config.use_speaker_embedding = True |
|
config.num_speakers = 10 |
|
config.use_gst = True |
|
config.gst = GSTConfig() |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(8, 120, config.audio["num_mels"]).to(device) |
|
linear_spec = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) |
|
mel_lengths = torch.randint(20, 120, (8,)).long().to(device) |
|
mel_lengths[-1] = 120 |
|
stop_targets = torch.zeros(8, 120, 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()) :, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
config.use_gst = True |
|
config.gst = GSTConfig() |
|
model = Tacotron(config).to(device) |
|
model.train() |
|
|
|
print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=config.lr) |
|
for _ in range(10): |
|
outputs = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} |
|
) |
|
optimizer.zero_grad() |
|
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) |
|
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) |
|
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
|
|
mel_spec = ( |
|
torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device) |
|
) |
|
mel_spec = mel_spec.repeat(8, 1, 1) |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
linear_spec = torch.rand(8, mel_spec.size(1), config.audio["fft_size"] // 2 + 1).to(device) |
|
mel_lengths = torch.randint(20, mel_spec.size(1), (8,)).long().to(device) |
|
mel_lengths[-1] = mel_spec.size(1) |
|
stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8,)).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()) :, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron(config).to(device) |
|
model.train() |
|
|
|
print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=config.lr) |
|
for _ in range(10): |
|
outputs = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} |
|
) |
|
optimizer.zero_grad() |
|
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) |
|
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) |
|
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
|
|
class TacotronCapacitronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
config = TacotronConfig( |
|
num_chars=32, |
|
num_speakers=10, |
|
use_speaker_embedding=True, |
|
out_channels=513, |
|
decoder_output_dim=80, |
|
use_capacitron_vae=True, |
|
capacitron_vae=CapacitronVAEConfig(), |
|
optimizer="CapacitronOptimizer", |
|
optimizer_params={ |
|
"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, |
|
"SGD": {"lr": 1e-5, "momentum": 0.9}, |
|
}, |
|
) |
|
|
|
batch = dict({}) |
|
batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) |
|
batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) |
|
batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] |
|
batch["text_lengths"][0] = 128 |
|
batch["linear_input"] = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) |
|
batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) |
|
batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) |
|
batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] |
|
batch["mel_lengths"][0] = 120 |
|
batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) |
|
batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) |
|
batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) |
|
batch["d_vectors"] = None |
|
|
|
for idx in batch["mel_lengths"]: |
|
batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 |
|
|
|
batch["stop_targets"] = batch["stop_targets"].view( |
|
batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 |
|
) |
|
batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
model = Tacotron(config).to(device) |
|
criterion = model.get_criterion() |
|
optimizer = model.get_optimizer() |
|
model.train() |
|
print(" > Num parameters for Tacotron with Capacitron VAE model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
for _ in range(10): |
|
_, loss_dict = model.train_step(batch, criterion) |
|
optimizer.zero_grad() |
|
loss_dict["capacitron_vae_beta_loss"].backward() |
|
optimizer.first_step() |
|
loss_dict["loss"].backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
|
|
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
config = config_global.copy() |
|
config.use_d_vector_file = True |
|
|
|
config.use_gst = True |
|
config.gst = GSTConfig() |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (8,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) |
|
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) |
|
mel_lengths = torch.randint(20, 30, (8,)).long().to(device) |
|
mel_lengths[-1] = mel_spec.size(1) |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_embeddings = torch.rand(8, 55).to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()) :, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
config.d_vector_dim = 55 |
|
model = Tacotron(config).to(device) |
|
model.train() |
|
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=config.lr) |
|
for _ in range(5): |
|
outputs = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} |
|
) |
|
optimizer.zero_grad() |
|
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) |
|
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) |
|
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): |
|
|
|
|
|
name, param = name_param |
|
if name == "gst_layer.encoder.recurrence.weight_hh_l0": |
|
continue |
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|