|
import copy |
|
import os |
|
import unittest |
|
|
|
import torch |
|
from torch import optim |
|
from trainer.logging.tensorboard_logger import TensorboardLogger |
|
|
|
from tests import get_tests_data_path, get_tests_input_path, get_tests_output_path |
|
from TTS.tts.configs.glow_tts_config import GlowTTSConfig |
|
from TTS.tts.layers.losses import GlowTTSLoss |
|
from TTS.tts.models.glow_tts import GlowTTS |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
|
|
torch.manual_seed(1) |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
c = GlowTTSConfig() |
|
|
|
ap = AudioProcessor(**c.audio) |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
BATCH_SIZE = 3 |
|
|
|
|
|
def count_parameters(model): |
|
r"""Count number of trainable parameters in a network""" |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
class TestGlowTTS(unittest.TestCase): |
|
@staticmethod |
|
def _create_inputs(batch_size=8): |
|
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device) |
|
input_lengths[-1] = 128 |
|
mel_spec = torch.rand(batch_size, 30, c.audio["num_mels"]).to(device) |
|
mel_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) |
|
speaker_ids = torch.randint(0, 5, (batch_size,)).long().to(device) |
|
return input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids |
|
|
|
@staticmethod |
|
def _check_parameter_changes(model, model_ref): |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref |
|
) |
|
count += 1 |
|
|
|
def test_init_multispeaker(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config) |
|
|
|
config.use_speaker_embedding = True |
|
config.num_speakers = 5 |
|
config.d_vector_dim = None |
|
model.init_multispeaker(config) |
|
self.assertEqual(model.c_in_channels, model.hidden_channels_enc) |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
config.use_d_vector_file = True |
|
config.d_vector_dim = 301 |
|
model = GlowTTS(config) |
|
model.init_multispeaker(config) |
|
self.assertEqual(model.c_in_channels, 301) |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
config.use_speaker_embedding = True |
|
config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json") |
|
speaker_manager = SpeakerManager.init_from_config(config) |
|
model = GlowTTS(config) |
|
model.speaker_manager = speaker_manager |
|
model.init_multispeaker(config) |
|
self.assertEqual(model.c_in_channels, model.hidden_channels_enc) |
|
self.assertEqual(model.num_speakers, speaker_manager.num_speakers) |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
config.use_d_vector_file = True |
|
config.d_vector_dim = 256 |
|
config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json") |
|
speaker_manager = SpeakerManager.init_from_config(config) |
|
model = GlowTTS(config) |
|
model.speaker_manager = speaker_manager |
|
model.init_multispeaker(config) |
|
self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim) |
|
self.assertEqual(model.num_speakers, speaker_manager.num_speakers) |
|
|
|
def test_unlock_act_norm_layers(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
model.unlock_act_norm_layers() |
|
for f in model.decoder.flows: |
|
if getattr(f, "set_ddi", False): |
|
self.assertFalse(f.initialized) |
|
|
|
def test_lock_act_norm_layers(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
model.lock_act_norm_layers() |
|
for f in model.decoder.flows: |
|
if getattr(f, "set_ddi", False): |
|
self.assertTrue(f.initialized) |
|
|
|
def _test_forward(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
model.train() |
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) |
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) |
|
self.assertEqual(y["z"].shape, mel_spec.shape) |
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) |
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape) |
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) |
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) |
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) |
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) |
|
|
|
def test_forward(self): |
|
self._test_forward(1) |
|
self._test_forward(3) |
|
|
|
def _test_forward_with_d_vector(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
d_vector = torch.rand(batch_size, 256).to(device) |
|
|
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
model.train() |
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) |
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"d_vectors": d_vector}) |
|
self.assertEqual(y["z"].shape, mel_spec.shape) |
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) |
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape) |
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) |
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) |
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) |
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) |
|
|
|
def test_forward_with_d_vector(self): |
|
self._test_forward_with_d_vector(1) |
|
self._test_forward_with_d_vector(3) |
|
|
|
def _test_forward_with_speaker_id(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) |
|
|
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
use_speaker_embedding=True, |
|
num_speakers=24, |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
model.train() |
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) |
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"speaker_ids": speaker_ids}) |
|
self.assertEqual(y["z"].shape, mel_spec.shape) |
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size])) |
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape) |
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape) |
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],)) |
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,)) |
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,)) |
|
|
|
def test_forward_with_speaker_id(self): |
|
self._test_forward_with_speaker_id(1) |
|
self._test_forward_with_speaker_id(3) |
|
|
|
def _assert_inference_outputs(self, outputs, input_dummy, mel_spec): |
|
output_shape = outputs["model_outputs"].shape |
|
self.assertEqual(outputs["model_outputs"].shape[::2], mel_spec.shape[::2]) |
|
self.assertEqual(outputs["logdet"], None) |
|
self.assertEqual(outputs["y_mean"].shape, output_shape) |
|
self.assertEqual(outputs["y_log_scale"].shape, output_shape) |
|
self.assertEqual(outputs["alignments"].shape, output_shape[:2] + (input_dummy.shape[1],)) |
|
self.assertEqual(outputs["durations_log"].shape, input_dummy.shape + (1,)) |
|
self.assertEqual(outputs["total_durations_log"].shape, input_dummy.shape + (1,)) |
|
|
|
def _test_inference(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
model.eval() |
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths}) |
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec) |
|
|
|
def test_inference(self): |
|
self._test_inference(1) |
|
self._test_inference(3) |
|
|
|
def _test_inference_with_d_vector(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
d_vector = torch.rand(batch_size, 256).to(device) |
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
model.eval() |
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "d_vectors": d_vector}) |
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec) |
|
|
|
def test_inference_with_d_vector(self): |
|
self._test_inference_with_d_vector(1) |
|
self._test_inference_with_d_vector(3) |
|
|
|
def _test_inference_with_speaker_ids(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device) |
|
|
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
use_speaker_embedding=True, |
|
num_speakers=24, |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids}) |
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec) |
|
|
|
def test_inference_with_speaker_ids(self): |
|
self._test_inference_with_speaker_ids(1) |
|
self._test_inference_with_speaker_ids(3) |
|
|
|
def _test_inference_with_MAS(self, batch_size): |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
model.eval() |
|
|
|
y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) |
|
y2 = model.decoder_inference(mel_spec, mel_lengths) |
|
assert ( |
|
y2["model_outputs"].shape == y["model_outputs"].shape |
|
), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( |
|
y["model_outputs"].shape, y2["model_outputs"].shape |
|
) |
|
|
|
def test_inference_with_MAS(self): |
|
self._test_inference_with_MAS(1) |
|
self._test_inference_with_MAS(3) |
|
|
|
def test_train_step(self): |
|
batch_size = BATCH_SIZE |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size) |
|
criterion = GlowTTSLoss() |
|
|
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS(config).to(device) |
|
|
|
model_ref = GlowTTS(config).to(device) |
|
model.train() |
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) |
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict())) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
for _ in range(5): |
|
optimizer.zero_grad() |
|
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) |
|
loss_dict = criterion( |
|
outputs["z"], |
|
outputs["y_mean"], |
|
outputs["y_log_scale"], |
|
outputs["logdet"], |
|
mel_lengths, |
|
outputs["durations_log"], |
|
outputs["total_durations_log"], |
|
input_lengths, |
|
) |
|
loss = loss_dict["loss"] |
|
loss.backward() |
|
optimizer.step() |
|
|
|
self._check_parameter_changes(model, model_ref) |
|
|
|
def test_train_eval_log(self): |
|
batch_size = BATCH_SIZE |
|
input_dummy, input_lengths, mel_spec, mel_lengths, _ = self._create_inputs(batch_size) |
|
batch = {} |
|
batch["text_input"] = input_dummy |
|
batch["text_lengths"] = input_lengths |
|
batch["mel_lengths"] = mel_lengths |
|
batch["mel_input"] = mel_spec |
|
batch["d_vectors"] = None |
|
batch["speaker_ids"] = None |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
model.run_data_dep_init = False |
|
model.train() |
|
logger = TensorboardLogger( |
|
log_dir=os.path.join(get_tests_output_path(), "dummy_glow_tts_logs"), model_name="glow_tts_test_train_log" |
|
) |
|
criterion = model.get_criterion() |
|
outputs, _ = model.train_step(batch, criterion) |
|
model.train_log(batch, outputs, logger, None, 1) |
|
model.eval_log(batch, outputs, logger, None, 1) |
|
logger.finish() |
|
|
|
def test_test_run(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
model.run_data_dep_init = False |
|
model.eval() |
|
test_figures, test_audios = model.test_run(None) |
|
self.assertTrue(test_figures is not None) |
|
self.assertTrue(test_audios is not None) |
|
|
|
def test_load_checkpoint(self): |
|
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth") |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
chkp = {} |
|
chkp["model"] = model.state_dict() |
|
torch.save(chkp, chkp_path) |
|
model.load_checkpoint(config, chkp_path) |
|
self.assertTrue(model.training) |
|
model.load_checkpoint(config, chkp_path, eval=True) |
|
self.assertFalse(model.training) |
|
|
|
def test_get_criterion(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
criterion = model.get_criterion() |
|
self.assertTrue(criterion is not None) |
|
|
|
def test_init_from_config(self): |
|
config = GlowTTSConfig(num_chars=32) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
|
|
config = GlowTTSConfig(num_chars=32, num_speakers=2) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(model.num_speakers == 2) |
|
self.assertTrue(not hasattr(model, "emb_g")) |
|
|
|
config = GlowTTSConfig(num_chars=32, num_speakers=2, use_speaker_embedding=True) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(model.num_speakers == 2) |
|
self.assertTrue(hasattr(model, "emb_g")) |
|
|
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
num_speakers=2, |
|
use_speaker_embedding=True, |
|
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"), |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(model.num_speakers == 10) |
|
self.assertTrue(hasattr(model, "emb_g")) |
|
|
|
config = GlowTTSConfig( |
|
num_chars=32, |
|
use_d_vector_file=True, |
|
d_vector_dim=256, |
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"), |
|
) |
|
model = GlowTTS.init_from_config(config, verbose=False).to(device) |
|
self.assertTrue(model.num_speakers == 1) |
|
self.assertTrue(not hasattr(model, "emb_g")) |
|
self.assertTrue(model.c_in_channels == config.d_vector_dim) |
|
|