|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch BailingMoeLinear Model.""" |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
from einops import rearrange, repeat |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, _prepare_4d_attention_mask, |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa) |
|
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast, |
|
MoeModelOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import (ALL_LAYERNORM_LAYERS, |
|
is_torch_greater_or_equal_than_1_13) |
|
from transformers.utils import (add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, logging, |
|
replace_return_docstrings) |
|
from transformers.utils.import_utils import is_torch_fx_available |
|
from .configuration_bailing_moe_linear import BailingMoeLinearConfig |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import (index_first_axis, pad_input, |
|
unpad_input) |
|
from fla.ops.simple_gla.fused_recurrent import fused_recurrent_simple_gla |
|
from fla.ops.simple_gla.chunk import chunk_simple_gla |
|
|
|
|
|
|
|
if is_torch_fx_available(): |
|
if not is_torch_greater_or_equal_than_1_13: |
|
import torch.fx |
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "BailingMoeLinearConfig" |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
warnings.warn( |
|
"Calling `transformers.models.BailingMoe.modeling_BailingMoe._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" |
|
) |
|
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
warnings.warn( |
|
"Calling `transformers.models.BailingMoe.modeling_BailingMoe._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoe.modeling_BailingMoe.AttentionMaskConverter._make_causal_mask" |
|
) |
|
return AttentionMaskConverter._make_causal_mask( |
|
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length |
|
) |
|
|
|
|
|
class BailingMoeRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
BailingMoeRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
ALL_LAYERNORM_LAYERS.append(BailingMoeRMSNorm) |
|
|
|
|
|
class BailingMoeRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
self.max_seq_len_cached = None |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq.to(t.device)) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class BailingMoeLinearScalingRotaryEmbedding(BailingMoeRotaryEmbedding): |
|
"""BailingMoeRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class BailingMoeDynamicNTKScalingRotaryEmbedding(BailingMoeRotaryEmbedding): |
|
"""BailingMoeRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048): |
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) |
|
|
|
|
|
|
|
def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048): |
|
low = math.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)) |
|
high = math.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)) |
|
return max(low, 0), min(high, dim - 1) |
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1): |
|
if scale <= 1: |
|
return 1.0 |
|
return 0.1 * mscale * math.log(scale) + 1.0 |
|
|
|
|
|
def yarn_linear_ramp_mask(min, max, dim): |
|
if min == max: |
|
max += 0.001 |
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) |
|
ramp_func = torch.clamp(linear_func, 0, 1) |
|
return ramp_func |
|
|
|
|
|
class BailingMoeYarnRotaryEmbedding(BailingMoeRotaryEmbedding): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
max_position_embeddings=2048, |
|
base=10000, |
|
device=None, |
|
scaling_factor=1.0, |
|
original_max_position_embeddings=4096, |
|
beta_fast=32, |
|
beta_slow=1, |
|
mscale=1, |
|
mscale_all_dim=0, |
|
): |
|
self.scaling_factor = scaling_factor |
|
self.original_max_position_embeddings = original_max_position_embeddings |
|
self.beta_fast = beta_fast |
|
self.beta_slow = beta_slow |
|
self.mscale = mscale |
|
self.mscale_all_dim = mscale_all_dim |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
dim = self.dim |
|
|
|
freq_extra = 1.0 / (self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) |
|
freq_inter = 1.0 / ( |
|
self.scaling_factor * self.base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) |
|
) |
|
|
|
low, high = yarn_find_correction_range( |
|
self.beta_fast, |
|
self.beta_slow, |
|
dim, |
|
self.base, |
|
self.original_max_position_embeddings, |
|
) |
|
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(device=device, dtype=torch.float32) |
|
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(seq_len, device=device, dtype=torch.float32) |
|
|
|
freqs = torch.outer(t, inv_freq) |
|
|
|
_mscale = float( |
|
yarn_get_mscale(self.scaling_factor, self.mscale) |
|
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) |
|
) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
class BailingMoeMLP(nn.Module): |
|
def __init__(self, config: BailingMoeLinearConfig, intermediate_size: int): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = intermediate_size |
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class BailingMoeGate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.num_experts_per_tok |
|
self.num_experts = config.num_experts |
|
|
|
|
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.gating_dim = config.hidden_size |
|
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
import torch.nn.init as init |
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states, sort=False): |
|
bsz, seq_len, h = hidden_states.shape |
|
|
|
hidden_states = hidden_states.view(-1, h) |
|
logits = F.linear(hidden_states, self.weight, None) |
|
scores = logits.softmax(dim=-1, dtype=torch.float32) |
|
|
|
|
|
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=sort) |
|
|
|
|
|
if self.top_k > 1 and self.norm_topk_prob: |
|
denominator = topk_weight.sum(dim=-1, keepdim=True) |
|
topk_weight = topk_weight / denominator |
|
|
|
return topk_idx, topk_weight, logits |
|
|
|
|
|
class BailingMoeSparseMoeBlock(nn.Module): |
|
""" |
|
A mixed expert module containing shared experts. |
|
""" |
|
|
|
def __init__(self, config: BailingMoeLinearConfig): |
|
super().__init__() |
|
self.config = config |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
self._setup_experts() |
|
self.gate = BailingMoeGate(config) |
|
if config.num_shared_experts is not None: |
|
self.shared_experts = BailingMoeMLP( |
|
config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts |
|
) |
|
|
|
def _setup_experts(self): |
|
self.experts = nn.ModuleList( |
|
[ |
|
BailingMoeMLP(config=self.config, intermediate_size=self.config.moe_intermediate_size) |
|
for _ in range(self.config.num_experts) |
|
] |
|
) |
|
|
|
def forward(self, hidden_states): |
|
identity = hidden_states |
|
bsz, seq_len, h = hidden_states.shape |
|
topk_idx, topk_weight, router_logits = self.gate(hidden_states) |
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) |
|
flat_topk_idx = topk_idx.view(-1) |
|
if self.training: |
|
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0) |
|
y = torch.empty_like(hidden_states) |
|
for i, expert in enumerate(self.experts): |
|
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) |
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
y = y.to(hidden_states.dtype).view(bsz, seq_len, h) |
|
else: |
|
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h) |
|
if self.config.num_shared_experts is not None: |
|
y = y + self.shared_experts(identity) |
|
return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1)) |
|
|
|
@torch.no_grad() |
|
def moe_infer(self, x, topk_ids, topk_weight): |
|
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) |
|
cnts.scatter_(1, topk_ids, 1) |
|
tokens_per_expert = cnts.sum(dim=0) |
|
idxs = topk_ids.view(-1).argsort() |
|
sorted_tokens = x[idxs // topk_ids.shape[1]] |
|
sorted_tokens_shape = sorted_tokens.shape |
|
tokens_per_expert = tokens_per_expert.cpu().numpy() |
|
outputs = [] |
|
start_idx = 0 |
|
for i, num_tokens in enumerate(tokens_per_expert): |
|
end_idx = start_idx + num_tokens |
|
if num_tokens == 0: |
|
continue |
|
expert = self.experts[i] |
|
tokens_for_this_expert = sorted_tokens[start_idx:end_idx] |
|
expert_out = expert(tokens_for_this_expert) |
|
outputs.append(expert_out) |
|
start_idx = end_idx |
|
|
|
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) |
|
new_x = torch.empty_like(outs) |
|
new_x[idxs] = outs |
|
final_out = ( |
|
new_x.view(*topk_ids.shape, -1) |
|
.type(topk_weight.dtype) |
|
.mul_(topk_weight.unsqueeze(dim=-1)) |
|
.sum(dim=1) |
|
.type(new_x.dtype) |
|
) |
|
return final_out |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def init_rotary_embeddings(config, head_dim, max_position_embeddings, rope_theta): |
|
"""Shared function to initialize rotary embeddings""" |
|
if config.rope_scaling is None: |
|
return BailingMoeRotaryEmbedding( |
|
head_dim, |
|
max_position_embeddings=max_position_embeddings, |
|
base=rope_theta, |
|
) |
|
else: |
|
scaling_type = config.rope_scaling["type"] |
|
scaling_factor = config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
return BailingMoeLinearScalingRotaryEmbedding( |
|
head_dim, |
|
max_position_embeddings=max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
return BailingMoeDynamicNTKScalingRotaryEmbedding( |
|
head_dim, |
|
max_position_embeddings=max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=rope_theta, |
|
) |
|
elif scaling_type == "yarn": |
|
kwargs = { |
|
key: config.rope_scaling[key] |
|
for key in [ |
|
"original_max_position_embeddings", |
|
"beta_fast", |
|
"beta_slow", |
|
"mscale", |
|
"mscale_all_dim", |
|
] |
|
if key in config.rope_scaling |
|
} |
|
return BailingMoeYarnRotaryEmbedding( |
|
head_dim, |
|
max_position_embeddings=max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=rope_theta, |
|
**kwargs, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
|
|
def build_slope_tensor(n_attention_heads: int): |
|
""" |
|
Build a tensor of slopes for Lightning Attention-2 as described in the paper: |
|
"Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models" |
|
(https://arxiv.org/abs/2401.04658) |
|
|
|
This function computes the slope values that control the decay rate of attention scores |
|
based on the number of attention heads. The slopes are designed to have specific |
|
mathematical properties that work optimally when the number of heads is a power of 2. |
|
|
|
For non-power-of-2 head counts, a workaround is implemented to maintain similar properties. |
|
|
|
Args: |
|
n_attention_heads (int): Number of attention heads in the model |
|
|
|
Returns: |
|
torch.Tensor: A tensor of shape [n_attention_heads] containing the computed slopes |
|
|
|
Note: |
|
Code copied from: https://github.com/OpenNLPLab/lightning-attention/blob/d15c38529bbd5c2c82b44ddda3cac885825aa873/lightning_attn/utils/utils.py#L6 |
|
""" |
|
def get_slopes(n): |
|
def get_slopes_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio ** i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2( |
|
n) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor( |
|
math.log2(n)) |
|
return (get_slopes_power_of_2(closest_power_of_2) |
|
+ get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]) |
|
|
|
slopes = torch.tensor(get_slopes(n_attention_heads), dtype=torch.float) |
|
return slopes |
|
|
|
|
|
class BailingMoeLinearAttention(nn.Module): |
|
""" |
|
BailingMoeLinearAttention implements a linear attention mechanism based on Lightning Attention-2 |
|
(https://arxiv.org/abs/2401.04658) with efficient computation using flash-linear-attention operators. |
|
|
|
The implementation leverages optimized kernels from the flash-linear-attention library |
|
(https://github.com/fla-org/flash-linear-attention) for maximum performance. |
|
""" |
|
def __init__( |
|
self, |
|
config: BailingMoeLinearConfig, |
|
mode: str = 'chunk', |
|
hidden_size: int = 1024, |
|
expand_k: float = 1.0, |
|
expand_v: float = 1.0, |
|
head_dim: int = 128, |
|
num_heads: int = 8, |
|
num_kv_heads: Optional[int] = None, |
|
feature_map: Optional[str] = None, |
|
use_output_gate: bool = True, |
|
gate_fn: str = 'swish', |
|
norm_eps: float = 1e-5, |
|
layer_idx: int = None, |
|
num_layers: int = None, |
|
use_low_rank: bool = False, |
|
rotary_type: str = 'none' |
|
): |
|
super().__init__() |
|
self.mode = mode |
|
self.hidden_size = hidden_size |
|
self.expand_k = expand_k |
|
self.expand_v = expand_v |
|
self.head_dim = head_dim |
|
self.num_heads = num_heads |
|
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads |
|
self.num_kv_groups = self.num_heads // self.num_kv_heads |
|
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None |
|
self.use_output_gate = use_output_gate |
|
|
|
self.key_dim = int(hidden_size * expand_k) |
|
self.value_dim = int(hidden_size * expand_v) |
|
self.layer_idx = layer_idx |
|
self.num_layers = num_layers |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`." |
|
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" |
|
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" |
|
|
|
if self.head_dim is not None: |
|
self.head_qk_dim = self.head_dim |
|
self.head_v_dim = self.head_dim |
|
else: |
|
self.head_qk_dim = self.key_dim // num_heads |
|
self.head_v_dim = self.value_dim // num_heads |
|
|
|
self.query_key_value = nn.Linear( |
|
hidden_size, |
|
self.num_heads * self.head_qk_dim + self.num_kv_heads * self.head_qk_dim + self.num_kv_heads * self.head_v_dim, |
|
bias=False |
|
) |
|
if self.use_output_gate: |
|
if use_low_rank: |
|
self.g_proj = nn.Sequential( |
|
nn.Linear(hidden_size, self.head_qk_dim, bias=False), |
|
nn.Linear(self.head_qk_dim, self.num_heads * self.head_v_dim, bias=False), |
|
) |
|
else: |
|
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_v_dim, bias=False) |
|
self.rotary_emb = init_rotary_embeddings(config, self.head_qk_dim, self.max_position_embeddings, self.rope_theta) |
|
|
|
self.linear_rope = config.linear_rope |
|
self.use_linear_silu = config.use_linear_silu |
|
self.rotary_type = rotary_type |
|
self.dense = nn.Linear(self.num_heads * self.head_v_dim, hidden_size, bias=False) |
|
|
|
self.g_norm = BailingMoeRMSNorm(hidden_size=self.num_heads * self.head_v_dim, eps=norm_eps) |
|
self.gate_fn = ACT2FN[gate_fn] |
|
self.linear_scale = None |
|
self.lightning_attn_ops = { |
|
'fused_recurrent': fused_recurrent_simple_gla, |
|
'chunk': chunk_simple_gla |
|
} |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
position_ids=None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode |
|
|
|
|
|
assert not output_attentions, "output_attentions can only be False, returning attention weights is not supported" |
|
|
|
qkv = self.query_key_value(hidden_states) |
|
if self.use_linear_silu: |
|
qkv = F.silu(qkv) |
|
q, k, v = torch.split(qkv, [ |
|
self.num_heads * self.head_qk_dim, |
|
self.num_kv_heads * self.head_qk_dim, |
|
self.num_kv_heads * self.head_v_dim |
|
], dim=-1) |
|
device = hidden_states.device |
|
|
|
recurrent_state = None |
|
if past_key_value is not None and isinstance(past_key_value, Cache): |
|
|
|
while len(past_key_value.key_cache) <= self.layer_idx: |
|
past_key_value.key_cache.append(None) |
|
past_key_value.value_cache.append(None) |
|
|
|
|
|
if past_key_value.key_cache[self.layer_idx] is not None: |
|
recurrent_state = past_key_value.key_cache[self.layer_idx] |
|
|
|
if recurrent_state.device != hidden_states.device: |
|
recurrent_state = recurrent_state.to(device).contiguous() |
|
|
|
if recurrent_state is None: |
|
|
|
if attention_mask is not None and use_cache: |
|
v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) |
|
|
|
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads) |
|
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads) |
|
|
|
rotary_cos, rotary_sin = self.rotary_emb(hidden_states, seq_len=position_ids.max() + 1) |
|
rotary_emb = (rotary_cos, rotary_sin) |
|
|
|
if self.linear_rope: |
|
if self.rotary_type in ['full-1d']: |
|
(cos, sin) = rotary_emb |
|
|
|
if cos.device != hidden_states.device: |
|
cos = cos.to(hidden_states.device) |
|
sin = sin.to(hidden_states.device) |
|
|
|
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=2) |
|
q = q.to(v.dtype) |
|
k = k.to(v.dtype) |
|
else: |
|
raise ValueError(f"Unsupported rotary type: {self.rotary_type}") |
|
|
|
if self.num_kv_groups > 1: |
|
k = repeat(k, 'b t h d -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) |
|
v = repeat(v, 'b t (h d) -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) |
|
else: |
|
v = rearrange(v, 'b t (h d) -> b t h d', h=self.num_kv_heads) |
|
|
|
H = q.shape[2] |
|
s = -build_slope_tensor(H) * (1 - self.layer_idx / (self.num_layers - 1) + 1e-5) |
|
g = s[None, None, :].expand(q.shape[0], q.shape[1], q.shape[2]).contiguous() |
|
|
|
q = q.to(device) |
|
k = k.to(device) |
|
v = v.to(device) |
|
g = g.to(device) |
|
|
|
if mode in self.lightning_attn_ops: |
|
o, recurrent_state = self.lightning_attn_ops[mode]( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
scale=self.linear_scale, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
else: |
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
o = o.to(hidden_states.dtype) |
|
o = rearrange(o, 'b t h d -> b t (h d)') |
|
o = self.g_norm(o) |
|
g = self.g_proj(hidden_states) |
|
o = o * F.sigmoid(g) |
|
o = self.dense(o) |
|
|
|
|
|
if use_cache and past_key_value is not None and isinstance(past_key_value, Cache): |
|
target_device = None |
|
for cache in past_key_value.key_cache: |
|
if cache is not None: |
|
target_device = cache.device |
|
break |
|
if target_device is None: |
|
target_device = recurrent_state.device |
|
|
|
|
|
if recurrent_state.device != target_device: |
|
recurrent_state = recurrent_state.to(target_device) |
|
|
|
past_key_value.key_cache[self.layer_idx] = recurrent_state |
|
past_key_value.value_cache[self.layer_idx] = None |
|
|
|
if self.layer_idx == 0: |
|
|
|
past_key_value._seen_tokens += hidden_states.shape[1] |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
return o, attn_weights, past_key_value |
|
|
|
|
|
|
|
class BailingMoeAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: BailingMoeLinearConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = config.head_dim or self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
self.query_key_value = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=config.use_qkv_bias, |
|
) |
|
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias) |
|
self.rotary_emb = init_rotary_embeddings(config, self.head_dim, self.max_position_embeddings, self.rope_theta) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.query_key_value(hidden_states) |
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) |
|
|
|
query_states, key_states, value_states = qkv.split( |
|
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 |
|
) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states / math.sqrt(self.head_dim), key_states.transpose(2, 3)) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
|
attn_output = self.dense(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class BailingMoeFlashAttention2(BailingMoeAttention): |
|
""" |
|
BailingMoe flash attention module. This module inherits from `BailingMoeAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
|
|
|
|
|
|
qkv = self.query_key_value(hidden_states) |
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) |
|
|
|
query_states, key_states, value_states = qkv.split( |
|
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 |
|
) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
|
|
if hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
elif torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() |
|
attn_output = self.dense(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
query_length (`int`): |
|
The length of the query sequence in terms of tokens. This represents the number of tokens in the |
|
`query_states` tensor along the sequence dimension. It is used to determine the effective sequence |
|
length for attention computations. |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
class BailingMoeSdpaAttention(BailingMoeAttention): |
|
""" |
|
BailingMoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`BailingMoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"BailingMoeLinearModel is using BailingMoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.query_key_value(hidden_states) |
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) |
|
|
|
query_states, key_states, value_states = qkv.split( |
|
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 |
|
) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
|
attn_output = self.dense(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
BAILING_MOE_ATTENTION_CLASSES = { |
|
"eager": BailingMoeAttention, |
|
"flash_attention_2": BailingMoeFlashAttention2, |
|
"sdpa": BailingMoeSdpaAttention, |
|
} |
|
|
|
|
|
class BailingMoeLinearDecoderLayer(nn.Module): |
|
def __init__(self, config: BailingMoeLinearConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.layer_group_size = config.layer_group_size |
|
|
|
|
|
|
|
self.attention_layer_type = "attention" if (layer_idx + 1) % config.layer_group_size == 0 or \ |
|
layer_idx >= config.num_hidden_layers // config.layer_group_size * config.layer_group_size else "linear_attention" |
|
|
|
if self.attention_layer_type == "attention": |
|
self.attention = BAILING_MOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) |
|
else: |
|
self.head_dim = config.head_dim or config.hidden_size // config.num_attention_heads |
|
self.use_linear_gqa = config.use_linear_gqa |
|
self.linear_mode = config.linear_mode |
|
self.attention = BailingMoeLinearAttention( |
|
config=config, |
|
mode=self.linear_mode, |
|
hidden_size=self.hidden_size, |
|
expand_k=1, |
|
expand_v=1, |
|
head_dim=self.head_dim, |
|
num_heads=config.num_attention_heads, |
|
num_kv_heads=config.num_key_value_heads if self.use_linear_gqa else None, |
|
feature_map=None, |
|
use_output_gate=True, |
|
gate_fn="swish", |
|
norm_eps=config.rms_norm_eps, |
|
layer_idx=layer_idx, |
|
num_layers=config.num_hidden_layers, |
|
use_low_rank=config.use_low_rank, |
|
rotary_type=config.rotary_type, |
|
) |
|
self.mlp = ( |
|
BailingMoeSparseMoeBlock(config) |
|
if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace) |
|
else BailingMoeMLP(config=config, intermediate_size=config.intermediate_size) |
|
) |
|
self.layer_idx = layer_idx |
|
self.input_layernorm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): |
|
cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, |
|
and should not be returned during inference. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
if self.attention_layer_type == "attention": |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
else: |
|
|
|
batch_size, seq_len = hidden_states.shape[0], hidden_states.shape[1] |
|
device = hidden_states.device |
|
if attention_mask is None: |
|
|
|
attention_mask = torch.ones((batch_size, seq_len), dtype=torch.int32, device=device) |
|
elif attention_mask.dim() == 0: |
|
mask_value = attention_mask.item() |
|
attention_mask = torch.full((batch_size, seq_len), mask_value, dtype=torch.int32, device=device) |
|
elif attention_mask.dim() == 4 and attention_mask.shape[1] == 1: |
|
attention_mask = attention_mask[:, 0, -1, :].to(torch.int32) |
|
|
|
attention_mask = (attention_mask > -1e4).to(torch.int32) |
|
else: |
|
raise ValueError(f"Unsupported mask dimension: {attention_mask.shape}") |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
if isinstance(hidden_states, tuple): |
|
hidden_states, router_logits = hidden_states |
|
else: |
|
router_logits = None |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
return outputs |
|
|
|
|
|
BAILINGMOELINEAR_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`BailingMoeLinearConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare BailingMoeLinear Model outputting raw hidden-states without any specific head on top.", |
|
BAILINGMOELINEAR_START_DOCSTRING, |
|
) |
|
class BailingMoeLinearPreTrainedModel(PreTrainedModel): |
|
config_class = BailingMoeLinearConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["BailingMoeLinearDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
BAILINGMOE_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare BailingMoeLinear Model outputting raw hidden-states without any specific head on top.", |
|
BAILINGMOELINEAR_START_DOCSTRING, |
|
) |
|
class BailingMoeLinearModel(BailingMoeLinearPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeLinearDecoderLayer`] |
|
|
|
Args: |
|
config: BailingMoeLinearConfig |
|
""" |
|
|
|
def __init__(self, config: BailingMoeLinearConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[BailingMoeLinearDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
|
|
|
|
self.standard_attn_layer_idx = 0 |
|
for layer_idx, layer in enumerate(self.layers): |
|
if hasattr(layer, 'attention_layer_type') and layer.attention_layer_type == "attention": |
|
self.standard_attn_layer_idx = layer_idx |
|
break |
|
|
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
self.norm = BailingMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.word_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(BAILINGMOE_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length, layer_idx=self.standard_attn_layer_idx) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
if self._use_flash_attention_2: |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._use_sdpa and not output_attentions: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
output_router_logits, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits and layer_outputs[-1] is not None: |
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
class BailingMoeLinearForCausalLM(BailingMoeLinearPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: BailingMoeLinearConfig): |
|
super().__init__(config) |
|
self.model = BailingMoeLinearModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.norm_head = config.norm_head |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.standard_attn_layer_idx = self.model.standard_attn_layer_idx |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.word_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def compute_logit(self, hidden_states): |
|
if self.norm_head: |
|
if self.training: |
|
norm_weight = ( |
|
self.lm_head.weight / (torch.norm(self.lm_head.weight, p=2, dim=0, keepdim=True) + 1e-7).detach() |
|
) |
|
logits = F.linear(hidden_states, norm_weight, None) |
|
else: |
|
self.lm_head.weight.data = ( |
|
self.lm_head.weight.data.float() |
|
/ (torch.norm(self.lm_head.weight.data.float(), p=2, dim=0, keepdim=True) + 1e-7) |
|
).to(hidden_states.dtype) |
|
logits = F.linear(hidden_states, self.lm_head.weight.data, None) |
|
self.norm_head = False |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
return logits |
|
|
|
@add_start_docstrings_to_model_forward(BAILINGMOE_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer |
|
|
|
>>> model = BailingMoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.compute_logit(hidden_states=hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
aux_loss = None |
|
|
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length(self.standard_attn_layer_idx) |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = ( |
|
past_key_values.get_max_length() |
|
if hasattr(past_key_values, "get_max_length") |
|
else past_key_values.get_max_cache_shape() |
|
) |
|
else: |
|
cache_length = past_length = past_key_values[self.standard_attn_layer_idx][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|