update
Browse files- modeling_bailing_moe.py +188 -1
modeling_bailing_moe.py
CHANGED
@@ -72,6 +72,81 @@ logger = logging.get_logger(__name__)
|
|
72 |
|
73 |
_CONFIG_FOR_DOC = "BailingMoeConfig"
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def _get_unpad_data(attention_mask):
|
77 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
@@ -421,7 +496,7 @@ class BailingMoeSparseMoeBlock(nn.Module):
|
|
421 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
|
422 |
if self.config.num_shared_experts is not None:
|
423 |
y = y + self.shared_experts(identity)
|
424 |
-
return y, (router_logits
|
425 |
|
426 |
@torch.no_grad()
|
427 |
def moe_infer(self, x, topk_ids, topk_weight):
|
@@ -1452,6 +1527,14 @@ class BailingMoeForCausalLM(BailingMoePreTrainedModel):
|
|
1452 |
loss = None
|
1453 |
aux_loss = None
|
1454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1455 |
if labels is not None:
|
1456 |
# Shift so that tokens < n predict n
|
1457 |
shift_logits = logits[..., :-1, :].contiguous()
|
@@ -1547,3 +1630,107 @@ class BailingMoeForCausalLM(BailingMoePreTrainedModel):
|
|
1547 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1548 |
)
|
1549 |
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
_CONFIG_FOR_DOC = "BailingMoeConfig"
|
74 |
|
75 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
76 |
+
def load_balancing_loss_func(
|
77 |
+
gate_logits_and_topk: Union[torch.Tensor, Tuple[torch.Tensor], None],
|
78 |
+
num_experts: Optional[int] = None,
|
79 |
+
top_k=2,
|
80 |
+
attention_mask: Optional[torch.Tensor] = None,
|
81 |
+
) -> Union[torch.Tensor, int]:
|
82 |
+
r"""
|
83 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
84 |
+
|
85 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
86 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
87 |
+
experts is too unbalanced.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
gate_logits:
|
91 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
92 |
+
shape [batch_size X sequence_length, num_experts].
|
93 |
+
num_experts:
|
94 |
+
Number of experts
|
95 |
+
top_k:
|
96 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
97 |
+
parameter.
|
98 |
+
attention_mask (`torch.Tensor`, *optional*):
|
99 |
+
The attention_mask used in forward function
|
100 |
+
shape [batch_size X sequence_length] if not None.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
The auxiliary loss.
|
104 |
+
"""
|
105 |
+
if gate_logits_and_topk is None or not isinstance(gate_logits_and_topk, tuple):
|
106 |
+
return 0
|
107 |
+
|
108 |
+
if isinstance(gate_logits_and_topk, tuple):
|
109 |
+
# concatenated_gate_logits.shape = [batch_size * num_layers * seq_len, num_experts]
|
110 |
+
concatenated_gate_logits = torch.cat([layer_gate[0] for layer_gate in gate_logits_and_topk], dim=0)
|
111 |
+
# selected_experts.shape = [batch_size * num_layers * seq_len, top_k_experts]
|
112 |
+
selected_experts = torch.cat([layer_gate[1] for layer_gate in gate_logits_and_topk], dim=0)
|
113 |
+
selected_experts.to(concatenated_gate_logits.device)
|
114 |
+
|
115 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
116 |
+
|
117 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
118 |
+
|
119 |
+
if attention_mask is None:
|
120 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
121 |
+
# Compute the average probability of routing to these experts
|
122 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
123 |
+
else:
|
124 |
+
batch_size, sequence_length = attention_mask.shape
|
125 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
126 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
127 |
+
expert_attention_mask = (
|
128 |
+
attention_mask[None, :, :, None, None]
|
129 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
130 |
+
.reshape(-1, top_k, num_experts)
|
131 |
+
)
|
132 |
+
|
133 |
+
# Compute the percentage of tokens routed to each experts
|
134 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
135 |
+
expert_attention_mask, dim=0
|
136 |
+
)
|
137 |
+
|
138 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
139 |
+
router_per_expert_attention_mask = (
|
140 |
+
attention_mask[None, :, :, None]
|
141 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
142 |
+
.reshape(-1, num_experts)
|
143 |
+
)
|
144 |
+
|
145 |
+
# Compute the average probability of routing to these experts
|
146 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(router_per_expert_attention_mask, dim=0)
|
147 |
+
|
148 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
149 |
+
return overall_loss
|
150 |
|
151 |
def _get_unpad_data(attention_mask):
|
152 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
|
496 |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
|
497 |
if self.config.num_shared_experts is not None:
|
498 |
y = y + self.shared_experts(identity)
|
499 |
+
return y, (router_logits, topk_idx)
|
500 |
|
501 |
@torch.no_grad()
|
502 |
def moe_infer(self, x, topk_ids, topk_weight):
|
|
|
1527 |
loss = None
|
1528 |
aux_loss = None
|
1529 |
|
1530 |
+
if output_router_logits:
|
1531 |
+
aux_loss = load_balancing_loss_func(
|
1532 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1533 |
+
self.num_experts,
|
1534 |
+
self.num_experts_per_tok,
|
1535 |
+
attention_mask,
|
1536 |
+
)
|
1537 |
+
|
1538 |
if labels is not None:
|
1539 |
# Shift so that tokens < n predict n
|
1540 |
shift_logits = logits[..., :-1, :].contiguous()
|
|
|
1630 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1631 |
)
|
1632 |
return reordered_past
|
1633 |
+
|
1634 |
+
|
1635 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE
|
1636 |
+
class BailingMoeForTokenClassification(BailingMoePreTrainedModel):
|
1637 |
+
def __init__(self, config):
|
1638 |
+
super().__init__(config)
|
1639 |
+
self.num_labels = config.num_labels
|
1640 |
+
|
1641 |
+
self.num_experts = config.num_experts
|
1642 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1643 |
+
|
1644 |
+
self.model = BailingMoeModel(config)
|
1645 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1646 |
+
classifier_dropout = config.classifier_dropout
|
1647 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1648 |
+
classifier_dropout = config.hidden_dropout
|
1649 |
+
else:
|
1650 |
+
classifier_dropout = 0.1
|
1651 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1652 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1653 |
+
|
1654 |
+
# Initialize weights and apply final processing
|
1655 |
+
self.post_init()
|
1656 |
+
|
1657 |
+
def get_input_embeddings(self):
|
1658 |
+
return self.model.embed_tokens
|
1659 |
+
|
1660 |
+
def set_input_embeddings(self, value):
|
1661 |
+
self.model.embed_tokens = value
|
1662 |
+
|
1663 |
+
@add_start_docstrings_to_model_forward(BAILINGMOE_INPUTS_DOCSTRING)
|
1664 |
+
def forward(
|
1665 |
+
self,
|
1666 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1667 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1668 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1669 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1670 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1671 |
+
labels: Optional[torch.LongTensor] = None,
|
1672 |
+
use_cache: Optional[bool] = None,
|
1673 |
+
output_attentions: Optional[bool] = None,
|
1674 |
+
output_hidden_states: Optional[bool] = None,
|
1675 |
+
output_router_logits: Optional[bool] = None,
|
1676 |
+
return_dict: Optional[bool] = None,
|
1677 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1678 |
+
r"""
|
1679 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1680 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1681 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1682 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1683 |
+
"""
|
1684 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1685 |
+
output_router_logits = (
|
1686 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1687 |
+
)
|
1688 |
+
|
1689 |
+
outputs = self.model(
|
1690 |
+
input_ids,
|
1691 |
+
attention_mask=attention_mask,
|
1692 |
+
position_ids=position_ids,
|
1693 |
+
past_key_values=past_key_values,
|
1694 |
+
inputs_embeds=inputs_embeds,
|
1695 |
+
use_cache=use_cache,
|
1696 |
+
output_attentions=output_attentions,
|
1697 |
+
output_hidden_states=output_hidden_states,
|
1698 |
+
output_router_logits=output_router_logits,
|
1699 |
+
return_dict=return_dict,
|
1700 |
+
)
|
1701 |
+
sequence_output = outputs[0]
|
1702 |
+
sequence_output = self.dropout(sequence_output)
|
1703 |
+
logits = self.score(sequence_output)
|
1704 |
+
|
1705 |
+
loss = None
|
1706 |
+
aux_loss = None
|
1707 |
+
if labels is not None:
|
1708 |
+
loss = self.loss_function(logits, labels, self.config)
|
1709 |
+
|
1710 |
+
if output_router_logits:
|
1711 |
+
aux_loss = load_balancing_loss_func(
|
1712 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1713 |
+
self.num_experts,
|
1714 |
+
self.num_experts_per_tok,
|
1715 |
+
attention_mask,
|
1716 |
+
)
|
1717 |
+
|
1718 |
+
if not return_dict:
|
1719 |
+
output = (logits,) + outputs[1:]
|
1720 |
+
if output_router_logits:
|
1721 |
+
output = (aux_loss,) + output
|
1722 |
+
return (loss,) + output if loss is not None else output
|
1723 |
+
|
1724 |
+
if not return_dict:
|
1725 |
+
output = (logits,) + outputs[2:]
|
1726 |
+
return ((loss,) + output) if loss is not None else output
|
1727 |
+
|
1728 |
+
return MoeCausalLMOutputWithPast(
|
1729 |
+
loss=loss,
|
1730 |
+
aux_loss=aux_loss,
|
1731 |
+
logits=logits,
|
1732 |
+
past_key_values=outputs.past_key_values,
|
1733 |
+
hidden_states=outputs.hidden_states,
|
1734 |
+
attentions=outputs.attentions,
|
1735 |
+
router_logits=outputs.router_logits,
|
1736 |
+
)
|