File size: 34,397 Bytes
c8a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
#!/usr/bin/env python3
# coding=utf-8
# Copyright (c) Ant Group. All rights reserved.

from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import PreTrainedTokenizerFast
from transformers.tokenization_utils_base import AddedToken, BatchEncoding
from transformers.utils import TensorType, logging


logger = logging.get_logger(__name__)


def is_system(msg):
    return msg['role'].lower() == 'system'


def is_user(msg):
    return msg['role'].lower() in ['human', 'user']


def is_assistant(msg):
    return msg['role'].lower() == 'assistant'


def _convert_to_conversation(query, system=None):
    conversation = []
    if system:
        conversation.append({"role": "SYSTEM", "content": system})
    if isinstance(query, str):
        conversation.append({"role": "HUMAN", "content": query})
    elif isinstance(query, List):
        conversation.extend(query)
    elif isinstance(query, Dict):
        if "messages" in query:
            conversation.extend(query["messages"])
            if "system_message" in query and len(conversation) > 0 and not is_system(conversation[0]):
                conversation.insert(0, {"role": "SYSTEM", "content": query["system_message"]})
        else:
            conversation.append(query)
    return conversation


class BailingTokenizer(PreTrainedTokenizerFast):
    is_bailing_tokenizer = True
    model_input_names = ["input_ids", "attention_mask"]
    slow_tokenizer_class = None

    # add gmask_token
    SPECIAL_TOKENS_ATTRIBUTES = [
        "bos_token",
        "eos_token",
        "unk_token",
        "sep_token",
        "pad_token",
        "cls_token",
        "mask_token",
        "gmask_token",
        "additional_special_tokens",
    ]

    def __init__(
        self,
        vocab_file=None,
        merges_file=None,
        tokenizer_file=None,
        clean_up_tokenization_spaces=False,
        bos_token="<|startoftext|>",
        eos_token="<|endoftext|>",
        cls_token="[CLS]",
        pad_token="<|endoftext|>",
        gmask_token="[gMASK]",
        add_bos_token=False,
        add_eos_token=False,
        **kwargs,
    ):
        self.add_bos_token = add_bos_token

        self._gmask_token = (
            AddedToken(gmask_token, lstrip=False, rstrip=False, normalized=False)
            if isinstance(gmask_token, str)
            else gmask_token
        )

        self._sop_token = (
            AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False)
            if isinstance(bos_token, str)
            else bos_token
        )

        self._eop_token = (
            AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False)
            if isinstance(eos_token, str)
            else eos_token
        )

        super().__init__(
            vocab_file=vocab_file,
            merges_file=merges_file,
            tokenizer_file=tokenizer_file,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            bos_token=bos_token,
            eos_token=eos_token,
            cls_token=cls_token,
            pad_token=eos_token,
            gmask_token=gmask_token,
            add_bos_token=add_bos_token,
            add_eos_token=add_eos_token,
            **kwargs,
        )

        self.check_special_tokens()

    def check_special_tokens(self):
        '''
        eos_token, cls_token, mask_token
        special tokens should init, check special token is not None
        '''
        for name, special_token in zip(
            ['eos', 'bos', 'cls', 'gmask'],
            [self.eos_token, self.bos_token, self.cls_token, self.gmask_token],
        ):
            assert special_token is not None, f'should init special token [{name}] in tokenizer_config.json'

    @property
    def gmask_token(self) -> Optional[str]:
        if self._gmask_token is None:
            if self.verbose:
                logger.error("Using gmask_token, but it is not set yet.")
            return None
        return str(self._gmask_token)

    @gmask_token.setter
    def gmask_token(self, value):
        if not isinstance(value, (str, AddedToken)) and value is not None:
            raise ValueError("Cannot set a non-string value as the gmask token")
        self._gmask_token = value

    @property
    def gmask_token_id(self) -> Optional[int]:
        if self._gmask_token is None:
            return None
        return self.convert_tokens_to_ids(self.gmask_token)

    @property
    def sop_token(self) -> Optional[str]:
        if self._sop_token is None:
            if self.verbose:
                logger.error("Using sop_token, but it is not set yet.")
            return None
        return str(self._sop_token)

    @sop_token.setter
    def sop_token(self, value):
        if not isinstance(value, (str, AddedToken)) and value is not None:
            raise ValueError("Cannot set a non-string value as the sop token")
        self._sop_token = value

    @property
    def sop_token_id(self) -> Optional[int]:
        if self._sop_token is None:
            return None
        return self.convert_tokens_to_ids(self.sop_token)

    @property
    def eop_token(self) -> Optional[str]:
        if self._eop_token is None:
            if self.verbose:
                logger.error("Using eop_token, but it is not set yet.")
            return None
        return str(self._eop_token)

    @eop_token.setter
    def eop_token(self, value):
        if not isinstance(value, (str, AddedToken)) and value is not None:
            raise ValueError("Cannot set a non-string value as the eop token")
        self._eop_token = value

    @property
    def eop_token_id(self) -> Optional[int]:
        if self._eop_token is None:
            return None
        return self.convert_tokens_to_ids(self.eop_token)

    @property
    def vocab_size(self):
        return len(self.get_vocab())

    def _chat_from_json(self, chat, chat_format="antglm_chat", system=None):
        msgs = chat if "messages" not in chat else chat["messages"]
        _msgs = []
        sys_msg = None
        for msg in msgs:
            if is_system(msg):
                sys_msg = msg['content']
            else:
                _msgs.append(msg)
        chat = {"messages": _msgs}
        system = system or sys_msg
        if system:
            chat['system_message'] = system
        from .chat_format import Chat

        return Chat.from_json(chat, name=chat_format)

    def apply_chat_template(
        self,
        conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
        tools: Optional[List[Dict]] = None,
        documents: Optional[List[Dict[str, str]]] = None,
        chat_template: Optional[str] = None,
        add_generation_prompt: bool = False,
        system: str = None,  # only used for legacy chatml
        tokenize=False,
        padding: bool = False,
        truncation: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_dict: bool = False,
        return_assistant_tokens_mask: bool = False,
        tokenizer_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ):
        if hasattr(self, "chat_template") and self.chat_template:
            # use transformers built-in method
            return super().apply_chat_template(
                conversation=conversation,
                tools=tools,
                documents=documents,
                chat_template=chat_template,
                add_generation_prompt=add_generation_prompt,
                tokenize=tokenize,
                padding=padding,
                truncation=truncation,
                return_tensors=return_tensors,
                return_dict=return_dict,
                return_assistant_tokens_mask=return_assistant_tokens_mask,
                tokenizer_kwargs=tokenizer_kwargs,
            )

        # 非chat_template方式后续将不再支持。
        logger.warning("Please set chat_template in tokenizer_config.json!")

        chat_format = kwargs.get('chat_format', 'antglm_chat')

        is_batched = False

        if isinstance(conversation, List) and (
            isinstance(conversation[0], (list, tuple)) or "messages" in conversation[0]
        ):
            conversations = conversation
            is_batched = True

        if not is_batched:
            conversations = [conversation]

        rendered = []
        for chat in conversations:
            rendered_chat = self._chat_from_json(chat, chat_format=chat_format, system=system).prompt_str
            rendered.append(rendered_chat)

        if not is_batched:
            rendered = rendered[0]

        if tokenize:
            out = self(
                rendered,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                add_special_tokens=False,
                return_tensors=return_tensors,
            )
            if return_dict:
                return out
            else:
                return out["input_ids"]
        else:
            return rendered

    def _build_position_ids(
        self,
        mask_pos: int,
        bos_pos: int,
        max_output_length: int,
        rotary_type: Optional[str] = "none",
        **kwargs,
    ) -> List[List[int]]:
        window_size = kwargs.get("window_size", 1024) - 1
        block_position_ids = [0] * bos_pos

        # 获得mask所在的位置,用于后面output positionid的构造
        if "1d" in rotary_type:
            position_ids = list(range(bos_pos)) + list(range(mask_pos + 1, mask_pos + max_output_length + 2))
            block_position_ids = block_position_ids + list(range(1, max_output_length + 2))
        elif "2d" in rotary_type:
            # 后面input_ids要加一个bos_id
            position_ids = list(range(bos_pos))
            position_ids = position_ids + [mask_pos] * (1 + max_output_length)
            block_position_ids = block_position_ids + list(range(1, max_output_length + 2))
        else:
            # build position ids
            position_ids = []
            repeat_times = bos_pos // window_size
            for _ in range(repeat_times):
                position_ids += list(range(window_size))
            position_ids += list(range(bos_pos - window_size * repeat_times))
            # need consider additional bos_id after input_ids
            mask_pos = position_ids[-1]
            position_ids += [mask_pos] * (max_output_length + 1)

            block_repeat_times = max_output_length // (window_size - 1)
            additional_block_position_ids = []
            for _ in range(block_repeat_times):
                additional_block_position_ids += list(range(1, window_size))
            additional_block_position_ids += list(
                range(1, max_output_length + 2 - (window_size - 1) * block_repeat_times)
            )
            block_position_ids = block_position_ids + additional_block_position_ids

        position_ids = [position_ids, block_position_ids]
        return position_ids

    def _build_inputs_for_generation(
        self,
        input_ids: List[int],
        max_input_length=None,
        left_truncate=True,
        max_output_length=1024,
        rotary_type="none",
        unidirectional_attention: bool = True,
        **kwargs,
    ):
        if max_input_length and len(input_ids) > max_input_length:
            if left_truncate:
                input_ids = input_ids[-max_input_length:]
            else:
                input_ids = input_ids[:max_input_length]

        is_left_padding = input_ids[0] == self.eos_token_id
        if not unidirectional_attention:
            if input_ids[0] != self.cls_token_id:
                input_ids = [self.cls_token_id] + input_ids

            if self.gmask_token_id not in set(input_ids):
                input_ids = input_ids + [self.gmask_token_id]

            mask_pos = input_ids.index(self.gmask_token_id)
            sep = len(input_ids)
        else:
            if self.add_bos_token:
                input_ids = input_ids + [self.bos_token_id]
                if self.eos_token_id in input_ids:
                    mask_pos = input_ids.index(self.eos_token_id) - 1
                else:
                    mask_pos = len(input_ids) - 1
                sep = len(input_ids) - 1
            else:
                sep = len(input_ids)
                if self.eos_token_id in input_ids:
                    if is_left_padding:
                        ori_input_ids = input_ids
                        input_ids = input_ids[::-1]
                    mask_pos = input_ids.index(self.eos_token_id) - 1
                    mask_pos = max(0, mask_pos)  # for empty sequence
                    if is_left_padding:
                        input_ids = ori_input_ids
                        mask_pos = sep - 1 - mask_pos  # the first non-eos token

                else:
                    mask_pos = len(input_ids) - 1

        position_ids = self._build_position_ids(mask_pos, sep, max_output_length, rotary_type, **kwargs)

        if is_left_padding:
            position_ids[0] = [max(0, i - mask_pos) for i in range(len(position_ids[0]))]

        # 后面input_ids要加一个bos_id
        total_length = sep + max_output_length
        if self.add_bos_token:
            total_length += 1

        def build_mask_matrix(seq_length, sep, mask_pos, unidirectional_attention):

            if unidirectional_attention:
                attention_mask = np.ones([seq_length, seq_length])
                attention_mask = np.tril(attention_mask)
                if is_left_padding:
                    attention_mask[:, :mask_pos] = 0
                else:
                    attention_mask[:, mask_pos + 1 : sep] = 0
            else:
                attention_mask = np.zeros([seq_length, seq_length])
                attention_mask[:, : mask_pos + 1] = 1
                for i in range(sep, total_length):
                    attention_mask[i, sep : i + 1] = 1
            return attention_mask

        if self.add_bos_token:
            attention_mask = build_mask_matrix(total_length, sep + 1, mask_pos, unidirectional_attention)
        else:
            attention_mask = build_mask_matrix(total_length, sep, mask_pos, unidirectional_attention)

        inputs = {
            "input_ids": torch.Tensor([input_ids]).long(),
            "position_ids": torch.Tensor([position_ids]).long(),
            "attention_mask": torch.Tensor(np.expand_dims(attention_mask, axis=[0, 1])).long(),
        }

        return BatchEncoding(inputs)

    def build_inputs_for_generation(
        self,
        input_ids: Union[List[int], List[List[int]], torch.Tensor],
        max_input_length=None,
        left_truncate=True,
        max_output_length=1024,
        rotary_type="1d",
        unidirectional_attention=True,
        **kwargs,
    ):
        if isinstance(input_ids, torch.Tensor):
            input_ids = input_ids.tolist()

        if isinstance(input_ids[0], list):
            input_ids_list = []
            position_ids_list = []
            attention_mask_list = []
            for _input_ids in input_ids:
                inputs = self._build_inputs_for_generation(
                    _input_ids,
                    max_input_length=max_input_length,
                    left_truncate=left_truncate,
                    max_output_length=max_output_length,
                    rotary_type=rotary_type,
                    unidirectional_attention=unidirectional_attention,
                    **kwargs,
                )
                input_ids_list.append(inputs['input_ids'])
                position_ids_list.append(inputs['position_ids'])
                attention_mask_list.append(inputs["attention_mask"])

            max_ids_length = max([input.size(1) for input in input_ids_list])

            for i in range(len(input_ids)):
                cur_ids_length = input_ids_list[i].size(1)
                if cur_ids_length < max_ids_length:
                    # pad input ids
                    pad_input_ids = input_ids_list[i].new_zeros((1, max_ids_length - cur_ids_length))
                    input_ids_list[i] = torch.cat([pad_input_ids, input_ids_list[i]], dim=-1)

                    # pad postition ids with left pad
                    # 0, 1, 2, 3, 4 ... -> 0, ..., 0, 1, 2, 3, 4, ...
                    pad_position_ids = input_ids_list[i].new_zeros((1, 2, max_ids_length - cur_ids_length))
                    position_ids_list[i] = torch.cat([pad_position_ids, position_ids_list[i]], dim=-1)

                    # pad generation attention mask with left and bottom pad
                    new_attention_mask = input_ids_list[i].new_zeros(
                        1,
                        1,
                        max_ids_length + max_output_length,
                        max_ids_length + max_output_length,
                    )
                    new_attention_mask[
                        :,
                        :,
                        max_ids_length - cur_ids_length :,
                        max_ids_length - cur_ids_length :,
                    ] = attention_mask_list[i]
                    attention_mask_list[i] = new_attention_mask.contiguous()

            input_ids_list = torch.cat(input_ids_list, dim=0)
            position_ids_list = torch.cat(position_ids_list, dim=0)
            attention_mask_list = torch.cat(attention_mask_list, dim=0)

            inputs = {
                "input_ids": input_ids_list,
                "position_ids": position_ids_list,
                "attention_mask": attention_mask_list,
            }

            return BatchEncoding(inputs)
        else:
            return self._build_inputs_for_generation(
                input_ids,
                max_input_length=max_input_length,
                left_truncate=left_truncate,
                max_output_length=max_output_length,
                rotary_type=rotary_type,
                unidirectional_attention=unidirectional_attention,
                **kwargs,
            )

    def _build_inputs_for_train(
        self,
        inputs: Union[str, List[str]],
        outputs: Union[str, List[str]],
        new_conversation_offset: List[int] = None,
        max_length: int = 2048,
        rotary_type: str = "1d",
        left_truncate: bool = True,
        unidirectional_attention: bool = True,
        isolation_position_ids: bool = False,
        padding: bool = True,
        use_fa2: bool = True,
        use_packed: bool = True,
    ):
        r"""
        Build tensor input for model training. If inputs and outputs are list, will pack them.

        Args:
            inputs (str, List[str], List[Dict], List[List[Dict]]): the input prompts.
            outputs (str, List[str]): the output responses.
            max_length (int, Optional): the maximum length of the final input ids for training. Default: 2048
            rotary_type (str, Optional): the rotary type of position embedding. Default: 1d
            left_truncate (bool, Optional): whether truncate the inputs from left. Default: True
            use_fa2 (bool, Optional): whether to build attention mask under flash attention 2.
        """
        if isinstance(inputs, str):
            inputs = [inputs]
        if isinstance(outputs, str):
            outputs = [outputs]

        assert len(inputs) == len(outputs)

        # inputs = [item.replace('\\n', '\n') for item in inputs]
        input_ids = [self(item)['input_ids'] for item in inputs]

        # outputs = [item.replace('\\n', '\n') for item in outputs]
        output_ids = [self(item)['input_ids'] for item in outputs]

        packed_input_ids = []
        packed_output_ids = []
        current_len = 0

        for idx, (input, output) in enumerate(zip(input_ids, output_ids)):
            num_special_tokens = 0
            if not unidirectional_attention:
                if (
                    idx == 0
                    or not new_conversation_offset
                    or (new_conversation_offset and idx in new_conversation_offset)
                ):
                    # cls and gmask
                    num_special_tokens += 2
                else:
                    # only gmask
                    num_special_tokens += 1
            else:
                # sop and eos
                if self.add_bos_token:
                    num_special_tokens += 2
                else:
                    num_special_tokens += 1

            # truncate
            if len(input) + len(output) + current_len > max_length - num_special_tokens:
                left_len = max_length - num_special_tokens - current_len
                if len(input) > left_len // 2 and len(output) > left_len // 2:
                    # 如果都超过了最大长度的一半,那都截取到最大长度的一半
                    if left_truncate:
                        input = input[-left_len // 2 :]
                    else:
                        input = input[: left_len // 2]
                    output = output[: left_len // 2]
                else:
                    # 从input_ids和output_ids中比较长的那一个截断,input_ids可以选择从左边或右边阶段,output_ids默认从右边截断
                    if len(input) >= len(output):
                        if left_truncate:
                            input = input[-(left_len - len(output)) :]
                        else:
                            input = input[: left_len - len(output)]
                    else:
                        output = output[: left_len - len(input)]
                if unidirectional_attention:
                    packed_input_ids.append(list(input))
                else:
                    if num_special_tokens == 4:
                        packed_input_ids.append([self.cls_token_id] + list(input) + [self.gmask_token_id])
                    else:
                        packed_input_ids.append(list(input) + [self.gmask_token_id])

                packed_output_ids.append(list(output) + [self.eos_token_id])
                current_len += len(input) + len(output) + num_special_tokens
                break
            if unidirectional_attention:
                packed_input_ids.append(list(input))
            else:
                if num_special_tokens == 4:
                    packed_input_ids.append([self.cls_token_id] + list(input) + [self.gmask_token_id])
                else:
                    packed_input_ids.append(list(input) + [self.gmask_token_id])

            packed_output_ids.append(list(output) + [self.eos_token_id])
            current_len += len(input) + len(output) + num_special_tokens

        assert current_len <= max_length

        if use_packed:
            # pack模式
            def build_mask_matrix(seq_length, sep):
                # https://github.com/pytorch/pytorch/issues/101932, fix triu/tril bf16 support
                m = torch.ones((1, seq_length, seq_length))
                mask = torch.arange(1, m.shape[-1] + 1).reshape(1, -1, 1).to(m.device)
                ids = torch.arange(1, m.shape[-1] + 1).reshape(1, 1, -1).expand(1, m.shape[-1], -1).to(m.device)
                m = (ids <= mask).type_as(m)

                m[0, :, : int(sep)] = 1
                m = m.squeeze(0)
                return m

            tokens = []
            attention_mask_list = []
            input_length_list = []
            position_id_list = []
            block_position_id_list = []

            for input, output in zip(packed_input_ids, packed_output_ids):
                if self.add_bos_token:
                    data = input + [self.sop_token_id] + output
                    mask_pos = len(input) - 1
                else:
                    data = input + output
                    mask_pos = len(input) - 2
                if unidirectional_attention:
                    attention_mask = build_mask_matrix(len(data), 0)
                else:
                    attention_mask = build_mask_matrix(len(data), len(input))
                attention_mask = attention_mask.squeeze((0, 1))

                attention_mask_list.append(attention_mask)
                input_length_list.append(len(input))
                tokens += data

                sop_pos = mask_pos + 1
                position_ids, block_position_ids = self._build_position_ids(
                    mask_pos=mask_pos, bos_pos=sop_pos, max_output_length=len(output), rotary_type=rotary_type
                )

                position_id_list.append(position_ids)
                block_position_id_list.append(block_position_ids)

            labels = []
            for i in range(len(packed_input_ids)):
                if self.add_bos_token:
                    labels += [-100] * len(packed_input_ids[i]) + packed_output_ids[i] + [-100]
                else:
                    labels += [-100] * (len(packed_input_ids[i]) - 1) + packed_output_ids[i] + [-100]

            total_len = 0
            if use_fa2:
                pack_attention_mask = -1 * torch.ones([2, current_len])
            else:
                pack_attention_mask = torch.tril(torch.ones([current_len, current_len]))

            pack_position_ids = []
            pack_block_position_ids = []
            total_len = 0
            max_index = 0
            for i in range(len(attention_mask_list)):
                attention_mask = attention_mask_list[i]
                if use_fa2:
                    pack_attention_mask[0][i] = total_len
                    pack_attention_mask[1][i] = total_len + input_length_list[i]
                else:
                    pack_attention_mask[
                        total_len : total_len + attention_mask.shape[0],
                        total_len : total_len + attention_mask.shape[0],
                    ] = attention_mask
                position_ids = [pid + max_index for pid in position_id_list[i]]
                block_position_ids = block_position_id_list[i]
                pack_position_ids.extend(position_ids)
                pack_block_position_ids.extend(block_position_ids)
                if not isolation_position_ids:
                    max_index = pack_position_ids[-1] + 1
                total_len += len(attention_mask_list[i])
            position_ids = [pack_position_ids, pack_block_position_ids]
        else:
            # 单输入模式
            input, output = packed_input_ids[0], packed_output_ids[0]
            if self.add_bos_token:
                tokens = input + [self.sop_token_id] + output
            else:
                tokens = input + output

            attention_mask = len(input)
            if self.add_bos_token:
                labels = [-100] * len(input) + output + [-100]
                position_ids = self._build_position_ids(
                    mask_pos=len(input) - 1, bos_pos=len(input), max_output_length=len(output), rotary_type=rotary_type
                )
            else:
                labels = [-100] * (len(input) - 1) + output + [-100]
                position_ids = self._build_position_ids(
                    mask_pos=len(input) - 2,
                    bos_pos=len(input) - 1,
                    max_output_length=len(output),
                    rotary_type=rotary_type,
                )

        assert len(tokens) == current_len

        # 最大长度补全
        if max_length > 0 and len(tokens) < max_length and padding:
            pad_length = max_length - len(tokens)
            tokens += [self.pad_token_id] * pad_length
            labels.extend([-100] * pad_length)
            position_ids[0] += [0] * pad_length
            position_ids[1] += [0] * pad_length

            if use_packed:
                if use_fa2:
                    new_attention_mask = -1 * torch.ones([2, max_length])
                    new_attention_mask[:, :current_len] = pack_attention_mask
                else:
                    new_attention_mask = torch.tril(torch.ones([max_length, max_length]))
                    new_attention_mask[:current_len, :current_len] = pack_attention_mask
                pack_attention_mask = new_attention_mask.contiguous()

        assert len(tokens) == len(labels)

        if max_length > 0 and padding:
            assert len(tokens) == max_length

        if use_fa2 and unidirectional_attention:
            # pack_attention_mask = torch.zeros([1], dtype=torch.long)
            pack_attention_mask = 0

        if use_packed:
            if not use_fa2:
                attention_mask = pack_attention_mask.unsqueeze(0).long()
            else:
                attention_mask = pack_attention_mask
        else:
            attention_mask = torch.tensor(attention_mask).long()
        return {
            'input_ids': torch.tensor(tokens).long(),
            'position_ids': torch.tensor(position_ids).long(),
            'attention_mask': attention_mask,
            'labels': torch.tensor(labels).long(),
        }

    def build_inputs_for_train(
        self,
        data: Union[Dict, List[Dict]],
        new_conversation_offset: List[int] = None,
        chat_format="antglm_chat",
        is_chat_format=True,  # 如果传入的是字符串,用于说明是否已经是
        use_true_multiturn=False,
        max_length: int = 2048,
        rotary_type: str = "1d",
        left_truncate: bool = True,
        unidirectional_attention: bool = True,
        isolation_position_ids: bool = False,
        padding: bool = True,
        use_fa2: bool = True,
        use_packed: bool = True,
    ):
        r"""
        Build tensor input for model training. If inputs and outputs are list, will pack them.

        Args:
            inputs (str, List[str], List[Dict], List[List[Dict]]): the input prompts.
            outputs (str, List[str]): the output responses.
            new_conversation_offset (List[int]): the offset index of the new conversation turn.
            is_chat_format (bool): whether the input is already chatml format
            max_length (int, Optional): the maximum length of the final input ids for training. Default: 2048
            rotary_type (str, Optional): the rotary type of position embedding. Default: 1d
            left_truncate (bool, Optional): whether truncate the inputs from left. Default: True
            use_fa2 (bool, Optional): whether to build attention mask under flash attention 2.
        """
        if isinstance(data, List):
            # chatml list
            _inputs = []
            _outputs = []
            new_conversation_offset = []
            for _input in data:
                if use_true_multiturn:
                    chat = self._chat_from_json(_input, chat_format=chat_format)
                    chat_data = chat.prompt_pack
                    new_conversation_offset.append(len(_inputs))
                    _inputs.extend(chat_data['input'])
                    _outputs.extend(chat_data['output'])
                else:
                    _conversation = _convert_to_conversation(_input)
                    assert is_assistant(_conversation[-1])

                    _inputs.append(
                        self.apply_chat_template(_conversation[:-1], tokenize=False, add_generation_prompt=True)
                    )
                    _outputs.append(_conversation[-1]['content'])

            return self._build_inputs_for_train(
                inputs=_inputs,
                outputs=_outputs,
                new_conversation_offset=new_conversation_offset,
                max_length=max_length,
                rotary_type=rotary_type,
                left_truncate=left_truncate,
                unidirectional_attention=unidirectional_attention,
                isolation_position_ids=isolation_position_ids,
                padding=padding,
                use_fa2=use_fa2,
                use_packed=use_packed,
            )
        elif isinstance(data, Dict):
            if 'messages' in data:
                # chatml format
                if use_true_multiturn:
                    chat = self._chat_from_json(data, chat_format=chat_format)
                    chat_data = chat.prompt_pack
                else:
                    _conversation = _convert_to_conversation(data)
                    assert is_assistant(_conversation[-1])

                    chat_data = {
                        "input": self.apply_chat_template(
                            _conversation[:-1], tokenize=False, add_generation_prompt=True
                        ),
                        "output": _conversation[-1]['content'],
                    }

                return self._build_inputs_for_train(
                    inputs=chat_data['input'],
                    outputs=chat_data['output'],
                    max_length=max_length,
                    rotary_type=rotary_type,
                    left_truncate=left_truncate,
                    unidirectional_attention=unidirectional_attention,
                    isolation_position_ids=isolation_position_ids,
                    padding=padding,
                    use_fa2=use_fa2,
                    use_packed=use_packed,
                )
            else:
                inputs = data['input']
                outputs = data['output']

                if isinstance(inputs, str):
                    inputs = [inputs]
                if isinstance(outputs, str):
                    outputs = [outputs]

                if not is_chat_format and chat_format:
                    inputs = [
                        self.apply_chat_template(
                            [{"role": "HUMAN", "content": item}], tokenize=False, chat_format=chat_format
                        )
                        for item in inputs
                    ]

                return self._build_inputs_for_train(
                    inputs=inputs,
                    outputs=outputs,
                    new_conversation_offset=new_conversation_offset,
                    max_length=max_length,
                    rotary_type=rotary_type,
                    left_truncate=left_truncate,
                    unidirectional_attention=unidirectional_attention,
                    isolation_position_ids=isolation_position_ids,
                    padding=padding,
                    use_fa2=use_fa2,
                    use_packed=use_packed,
                )