File size: 15,511 Bytes
7395889 8550385 7395889 8550385 7395889 8550385 7395889 8550385 7395889 8550385 7395889 1b7eead 7395889 1b7eead 7395889 c9543c7 7395889 c9543c7 7395889 c9543c7 7395889 1b7eead 9cbf886 7395889 69cb715 7395889 69cb715 7395889 1b7eead 7395889 69cb715 7395889 ead11a7 7395889 4ff9cbf 7395889 1b7eead 7395889 69cb715 7395889 1b7eead 7395889 69cb715 7395889 69cb715 8550385 7395889 1b7eead 7395889 4ff9cbf c9543c7 4ff9cbf 7395889 c9543c7 4ff9cbf 7395889 4ff9cbf 7395889 4ff9cbf c9543c7 69cb715 7395889 4ff9cbf 69cb715 7395889 4ff9cbf 7395889 1b7eead 7395889 1b7eead 7395889 4ff9cbf 7395889 69cb715 7395889 c9543c7 7395889 1b7eead 7395889 8550385 d3df147 8550385 7395889 8550385 7395889 9cbf886 8550385 7395889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import asyncio
import zlib
from functools import lru_cache
from io import BytesIO
from pathlib import Path
from typing import Sequence, List, Tuple, Generator, Iterable, TYPE_CHECKING
import numpy as np
from hfendpoints.errors.config import UnsupportedModelArchitecture
from hfendpoints.openai import Context, run
from hfendpoints.openai.audio import (
AutomaticSpeechRecognitionEndpoint,
TranscriptionRequest,
TranscriptionResponse,
TranscriptionResponseKind,
SegmentBuilder,
Segment,
Transcription,
VerboseTranscription,
)
from librosa import load as load_audio, get_duration
from loguru import logger
from transformers import AutoConfig
from vllm import (
AsyncEngineArgs,
AsyncLLMEngine,
SamplingParams,
)
from hfendpoints import EndpointConfig, Handler, ensure_supported_architectures
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
from vllm import CompletionOutput, RequestOutput
from vllm.sequence import SampleLogprobs
SUPPORTED_MODEL_ARCHITECTURES = ["WhisperForConditionalGeneration"]
def chunk_audio_with_duration(
audio: np.ndarray, maximum_duration_sec: int, sampling_rate: int
) -> Sequence[np.ndarray]:
"""
Chunk a mono audio timeseries so that each chunk is as long as `maximum_duration_sec`.
Chunks are evenly distributed except the last one which might be shorter
:param audio: The mono timeseries waveform of the audio
:param maximum_duration_sec: The maximum length, in seconds, for each chunk
:param sampling_rate: The number of samples to represent one second of audio
:return: List of numpy array representing the chunk
"""
# We pad the input so that every chunk length is `max_duration_sec`
max_duration_samples = sampling_rate * maximum_duration_sec
padding = max_duration_samples - np.remainder(len(audio), max_duration_samples)
audio = np.pad(audio, (0, padding), constant_values=0.0)
return np.split(audio, len(audio) // max_duration_samples)
def compression_ratio(text: str) -> float:
"""
:param text:
:return:
"""
text_bytes = text.encode("utf-8")
return len(text_bytes) / len(zlib.compress(text_bytes))
def create_prompt(
audio: np.ndarray,
sampling_rate: int,
language: int,
timestamp_marker: int,
):
"""
Generate the right prompt with the specific parameters to submit for inference over Whisper
:param audio: PCM data containing audio signal representation
:param sampling_rate: Number of samples in one second of audio
:param language: Token id representing the language of the audio content
:param timestamp_marker: Token id representing the temporal position within the audio content for this segment
:return: Dictionary with all the prefilled value to call `generate`
"""
return {
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {"audio": (audio, sampling_rate)},
},
"decoder_prompt": {
"prompt_token_ids": [
50258,
language,
50360,
timestamp_marker,
]
},
}
def create_params(
max_tokens: int, temperature: float, is_verbose: bool
) -> "SamplingParams":
"""
Create sampling parameters to submit for inference through vLLM `generate`
:param max_tokens: Maximum number of tokens to generate
:param temperature: Sampling temperature for the softmax
:param is_verbose: Flag indicating whether the response is required to contains verbose output
:return: `SamplingParams`
"""
return SamplingParams.from_optional(
# output_kind=RequestOutputKind.FINAL_ONLY, # Change if streaming
max_tokens=max_tokens,
skip_special_tokens=False,
detokenize=False,
temperature=temperature,
logprobs=1 if is_verbose else None,
)
def get_avg_logprob(logprobs: "SampleLogprobs") -> float:
"""
Aggregate the log probabilities over all generation steps by taking the log probability of the generated token
:param logprobs: Iterable of log probabilities for all the generation steps
:return: Averaged log probability as floating-point number
"""
sum_logp = sum(next(iter(_step_.values())).logprob for _step_ in logprobs)
return sum_logp / float(len(logprobs))
def process_chunk(
tokenizer: "PreTrainedTokenizer",
ids: np.ndarray,
logprobs: "SampleLogprobs",
request: TranscriptionRequest,
segment_offset: int,
timestamp_offset: int,
) -> Generator:
"""
Decode a single transcribed audio chunk and generates all the segments associated
:param tokenizer:
:param ids:
:param logprobs:
:param request:
:param segment_offset:
:param timestamp_offset:
:return:
"""
# Some constants
k_timestamp_token = lru_cache(tokenizer.convert_tokens_to_ids)(f"<|0.00|>")
# Detect start of transcript token
# sot_mask = ids == k_sot_token
# Timestamps are expected to have ids greater than token_id(<|0.00|>)
# We create a mask for all the potential tokens which are >= token_id(<|0.00|>)
timestamps_mask = ids >= k_timestamp_token
if np.any(timestamps_mask):
# If we have a timestamp token, we need to check whether it's a final token or a final then the next
is_single_ending_timestamp = np.array_equal(timestamps_mask[-2:], [False, True])
# Iterate over timestamps
timestamp_start, timestamp_end = 0.0, 0.0
slice_start = 0
for t, position in enumerate(np.flatnonzero(timestamps_mask)):
timestamp = float(tokenizer.convert_ids_to_tokens([ids[position]])[0][2:-2])
if t % 2 == 0:
timestamp_end = timestamp
# Retrieve segment info
segment_ids = ids[slice_start:position]
segment_text = tokenizer.decode(segment_ids)
# Compute the avg_logprob
avg_logprob = get_avg_logprob(logprobs) if logprobs else float("nan")
# no-speech logprob
# no_speech_token_id = lru_cache(tokenizer.convert_tokens_to_ids("<|nospeech|>"))
# no_speech_logprob = logprobs[no_speech_token_id]
# Materialize the segment in memory
segment = (
SegmentBuilder()
.id(segment_offset + t)
.start(timestamp_offset + timestamp_start)
.end(timestamp_offset + timestamp_end)
.text(segment_text)
.tokens(segment_ids.tolist())
.temperature(request.temperature)
.avg_logprob(avg_logprob)
.compression_ratio(compression_ratio(segment_text))
.build()
)
yield segment, is_single_ending_timestamp
# Update the start position
slice_start = position
else:
timestamp_start = timestamp
def process_chunks(
tokenizer: "PreTrainedTokenizer",
chunks: List["RequestOutput"],
request: TranscriptionRequest,
) -> Tuple[List[Segment], str]:
"""
Iterate over all the audio chunk's outputs and consolidates outputs as segment(s) whether the response is verbose or not
:param tokenizer: The tokenizer to use for decoding tokens
:param chunks: Transcribed audio chunks
:param request: Received request from the user
:return: `Tuple[List[Segment], str]` holding all the consolidated segments along with full transcribed text
"""
# k_nospeech_token = tokenizer.convert_tokens_to_ids("<|nospeech|>")
# k_sot_token = tokenizer.convert_tokens_to_ids("<|startoftranscript|>")
materialized_segments, materialized_segments_tokens_acc = [], []
# Iterate over segments
for idx, chunk in enumerate(chunks):
time_offset = idx * WhisperHandler.WHISPER_SEGMENT_DURATION_SEC
segment_offset = len(materialized_segments)
generation: "CompletionOutput" = chunk.outputs[-1]
ids: np.ndarray = np.asarray(generation.token_ids)
logprobs = generation.logprobs
for segment, _is_continuation in process_chunk(
tokenizer, ids, logprobs, request, segment_offset, time_offset
):
materialized_segments.append(segment)
# Accumulate the tokens for full decoding
materialized_segments_tokens_acc += generation.token_ids
text = tokenizer.decode(
materialized_segments_tokens_acc,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
return materialized_segments, text
class WhisperHandler(Handler[TranscriptionRequest, TranscriptionResponse]):
WHISPER_SEGMENT_DURATION_SEC = 30
WHISPER_SAMPLING_RATE = 22050
__slots__ = ("_engine",)
def __init__(self, model_id_or_path: str):
super().__init__(model_id_or_path)
self._engine = AsyncLLMEngine.from_engine_args(
AsyncEngineArgs(
model_id_or_path,
task="transcription",
device="auto",
dtype="bfloat16",
kv_cache_dtype="fp8",
enforce_eager=False,
enable_prefix_caching=True,
max_logprobs=1, # TODO(mfuntowicz) : Set from config?
disable_log_requests=True,
)
)
async def transcribe(
self,
ctx: Context,
request: TranscriptionRequest,
tokenizer: "PreTrainedTokenizer",
audio_chunks: Iterable[np.ndarray],
params: "SamplingParams",
) -> (List[Segment], str):
async def __agenerate__(request_id: str, prompt, params):
"""
Helper method to unroll asynchronous generator and return the last element
:param request_id: Unique identifier for this request
:param prompt: The prompt to submit for inference on vLLM through `generate(...)`
:param params: The parameters passed along with the prompt for inference on vLLM through `generate(...)`
:return: `CompletionOutput`
"""
# Submit for inference on the segment & keep track of the background task
async for step in self._engine.generate(prompt, params, request_id):
pass
return step
# Wrap tokenizer results with LRU cache to avoid vocabulary lookup
convert_tokens_to_ids = lru_cache(tokenizer.convert_tokens_to_ids)
coro_handles = []
for audio_chunk_id, audio_chunk in enumerate(audio_chunks):
# Generate suffixed request-id to submit and identify through vLLM scheduler
request_id = f"{ctx.request_id}-{audio_chunk_id}"
# Compute the starting time of the chunk as each consecutive chunk represents 30s worth of audio
timestamp = audio_chunk_id * WhisperHandler.WHISPER_SEGMENT_DURATION_SEC
# Compute initial prompt for the segment
is_verbose = request.response_kind == TranscriptionResponseKind.VERBOSE_JSON
language = convert_tokens_to_ids(f"<|{request.language}|>")
timestamp = convert_tokens_to_ids(
f"<|0.00|>" if is_verbose else "<|notimestamps|>"
)
prompt = create_prompt(
audio_chunk, WhisperHandler.WHISPER_SAMPLING_RATE, language, timestamp
)
# Submit the task
coro_handles += [
asyncio.create_task(__agenerate__(request_id, prompt, params))
]
# Wait for all the segment to complete
text_chunks = await asyncio.gather(*coro_handles)
# if not is_cancelled.cancel_called:
segments, text = await asyncio.get_event_loop().run_in_executor(
None, process_chunks, tokenizer, text_chunks, request
)
return segments, text
async def __call__(
self, request: TranscriptionRequest, ctx: Context
) -> TranscriptionResponse:
with logger.contextualize(request_id=ctx.request_id):
with memoryview(request) as audio:
# Check if we need to enable the verbose path
is_verbose = (
request.response_kind == TranscriptionResponseKind.VERBOSE_JSON
)
# Retrieve the tokenizer and model config asynchronously while we decode audio
tokenizer = asyncio.create_task(self._engine.get_tokenizer())
model_config = asyncio.create_task(self._engine.get_model_config())
# Decode audio from librosa (for now)
# TODO: Use native (Rust provided) decoding
(waveform, sampling) = load_audio(BytesIO(audio), sr=22050, mono=True)
logger.debug(
f"Successfully decoded {len(waveform)} bytes PCM audio chunk"
)
# Create parameters
max_tokens = (await model_config).max_model_len - 4
params = create_params(max_tokens, request.temperature, is_verbose)
# Chunk audio in pieces
audio_chunks = chunk_audio_with_duration(
waveform,
maximum_duration_sec=WhisperHandler.WHISPER_SEGMENT_DURATION_SEC,
sampling_rate=WhisperHandler.WHISPER_SAMPLING_RATE,
)
# Submit audio pieces to the batcher and gather them all
segments, text = await self.transcribe(
ctx, request, await tokenizer, audio_chunks, params
)
match request.response_kind:
case TranscriptionResponseKind.VERBOSE_JSON:
return TranscriptionResponse.verbose(
VerboseTranscription(
text=text,
duration=get_duration(y=waveform, sr=sampling),
language=request.language,
segments=segments,
# word=None
)
)
case TranscriptionResponseKind.JSON:
return TranscriptionResponse.json(text)
case TranscriptionResponseKind.TEXT:
return TranscriptionResponse.text(text)
# I don't forsee any case this would happen but at least we are safe
raise ValueError(f"Invalid response_kind ({request.response_kind})")
def entrypoint():
# Retrieve endpoint configuration
endpoint_config = EndpointConfig.from_env()
# Ensure the model is compatible is pre-downloaded
if (model_local_path := Path(endpoint_config.model_id)).exists():
if (config_local_path := (model_local_path / "config.json")).exists():
config = AutoConfig.from_pretrained(config_local_path)
ensure_supported_architectures(config, SUPPORTED_MODEL_ARCHITECTURES)
# Initialize the endpoint
endpoint = AutomaticSpeechRecognitionEndpoint(
WhisperHandler(endpoint_config.model_id)
)
# Serve the model
run(endpoint, endpoint_config.interface, endpoint_config.port)
if __name__ == "__main__":
entrypoint()
|