File size: 12,344 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import torch
from torch import nn
import math
import warnings
from torch.nn import init
import numpy as np
from uniperceiver.utils import comm
INIT_STD = 0.02
INIT_EMBEDDING_STD = 0.02
def null_loss_check(outputs_dict):
ret = {}
if 'null_loss' in outputs_dict:
null_loss = outputs_dict['null_loss']
else:
null_loss = 0
for shared_target in outputs_dict['shared_target_sets'].values():
null_loss += torch.sum(shared_target[0]['data']*0)
ret.update({'null_loss': null_loss})
return ret
def build_2d_sincos_position_embedding(cfg, video_embed, cls_token=False, temperature=10000., pos_emd_fix=False):
h, w = int(video_embed.max_spatial_size**.5), int(video_embed.max_spatial_size**.5)
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
if cfg.MODEL.POSEMBED_SCALE != 1.0:
grid_w = grid_w * cfg.MODEL.POSEMBED_SCALE
grid_h = grid_h * cfg.MODEL.POSEMBED_SCALE
assert cfg.MODEL.BERT.HIDDEN_SIZE % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = cfg.MODEL.BERT.HIDDEN_SIZE // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat([
torch.sin(out_w),
torch.cos(out_w),
torch.sin(out_h),
torch.cos(out_h)
],
dim=1)[ :, :]
# assert self.num_tokens == 1, 'Assuming one and only one token, [cls]'
if cls_token:
pe_token = torch.zeros([ 1, cfg.MODEL.BERT.HIDDEN_SIZE], dtype=torch.float32)
video_embed.embeddings_st_pos.spatial_pos_embed.weight = nn.Parameter(torch.cat([pe_token, pos_emb], dim=0))
else:
video_embed.embeddings_st_pos.spatial_pos_embed.weight = nn.Parameter(pos_emb)
if cfg.MODEL.POSEMBEDFIX:
video_embed.embeddings_st_pos.spatial_pos_embed.weight.requires_grad = False
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def truncated_normal_(tensor, mode='fan_in',):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
fan = init._calculate_correct_fan(tensor, mode=mode)
gain = 0.1
std = math.sqrt(gain/fan)
init.trunc_normal_(tensor, mean=0.0, std=std)
def normal_(data):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
def init_bert_params(module):
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, nn.MultiheadAttention):
# normal_(module.q_proj.weight.data)
# normal_(module.k_proj.weight.data)
# normal_(module.v_proj.weight.data)
normal_(module.in_proj_weight.data)
def init_switchtransformer_params(module):
if isinstance(module, nn.Linear):
truncated_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def init_timm_params(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=INIT_STD)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Embedding):
trunc_normal_(m.weight.data, std=INIT_EMBEDDING_STD)
if m.padding_idx is not None:
m.weight.data[m.padding_idx].zero_()
if isinstance(m, nn.MultiheadAttention):
trunc_normal_(m.q_proj.weight.data, std=INIT_STD)
trunc_normal_(m.k_proj.weight.data, std=INIT_STD)
trunc_normal_(m.v_proj.weight.data, std=INIT_STD)
def initialize_weights_as_mae(model):
# initialization
# initialize nn.Linear and nn.LayerNorm
model.apply(init_weights_mae)
# initialize (and freeze) pos_embed by sin-cos embedding
if model.video_embed is not None:
build_2d_sincos_position_embedding(model.cfg, model.video_embed)
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = model.video_embed.embeddings.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
if model.video_embed.embeddings.bias is not None:
nn.init.zeros_(model.video_embed.embeddings.bias)
def initialize_weights_as_mocov3(model):
model.initialize_weights_as_mae()
# cls token with smaller std
# temp = torch.zeros([ 1, self.cfg.MODEL.BERT.HIDDEN_SIZE], dtype=torch.float32)
nn.init.normal_(model.token_embed.embeddings.weight[-1, :], std=1e-6) # small std for cls token
def init_weights_mae(m):
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
# torch.nn.init.normal_(self.cls_token, std=.02)
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
if m.weight.shape[0] == m.weight.shape[1] * 3:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
else:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
# all word embedding e.g. word. spe. type embedding postion embed
# MAE only has embedding like cls_token and mask tokens
elif isinstance(m, nn.Embedding):
torch.nn.init.normal_(m.weight.data, std=INIT_EMBEDDING_STD)
if m.padding_idx is not None:
m.weight.data[m.padding_idx].zero_()
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.MultiheadAttention):
if m.q_proj_weight is not None:
torch.nn.init.xavier_uniform_(m.q_proj_weight.data)
torch.nn.init.xavier_uniform_(m.k_proj_weight.data)
torch.nn.init.xavier_uniform_(m.v_proj_weight.data)
else:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.in_proj_weight.shape[0] // 3 + m.in_proj_weight.shape[1]))
nn.init.uniform_(m.in_proj_weight, -val, val)
def data_half(fp16, bf16, data):
if fp16:
for k, v in data.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
data[k] = v.half()
# print(k)
elif bf16:
for k, v in data.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
data[k] = v.to(torch.bfloat16)
# print(k)
return data
def postprocess(data_dict:dict, task_info:dict ):
if data_dict.get('sample_info', None) is not None and data_dict['sample_info'].get('distributed', False):
data = data_dict['data']
hidden_states = data[:, 0].contiguous(
) # HERE only use the spe token feature!
hidden_states = torch.cat(torch.distributed.nn.all_gather(hidden_states))
total_length = data_dict['sample_info']['total_num']
if hidden_states.shape[0] > total_length:
hidden_states = hidden_states[:total_length]
data_dict['data'] = hidden_states.unsqueeze(1)
def get_spe_token(tokenizer, token_embed):
if comm.old_checkpoint:
a = torch.tensor(tokenizer.encode('<|spe|>')).cuda().unsqueeze(0) # bs, 1
return token_embed(a, type_embed=False, pos_embed=False)
else:
a = torch.tensor(tokenizer.encode('spe')).cuda().unsqueeze(0) # bs, 1
return token_embed(a)
def preprocess(tokenizer, token_embed, data_list:list, task_info:dict):
# perparation for fused_encoder input
bs = data_list[0]['data'].shape[0]
device = data_list[0]['data'].device
mask_dtype = torch.uint8
#TODO: prompt embedding
prefix_spe_before_fuse = task_info.get('prefix_spe_before_fuse', True)
combined_data = []
# spe embedding
spe_token = get_spe_token(tokenizer, token_embed).expand(bs, -1, -1)
length = [ data_dict['data'].shape[1] for data_dict in data_list]
if prefix_spe_before_fuse:
length = [1] + length
combined_data.append(spe_token)
cum_length = np.cumsum(length).tolist()
invalid_mask_active = any([ data_dict.get('invalid_mask', None) is not None for data_dict in data_list])
if invalid_mask_active:
combined_valid_mask = torch.zeros((bs, cum_length[-1]), dtype=mask_dtype, device=device)
else:
combined_valid_mask = None
for i, data_dict in enumerate(data_list):
combined_data.append(data_dict['data'])
if data_dict.get('invalid_mask', None) is not None:
combined_valid_mask[:, cum_length[i]:cum_length[i+1]] = data_dict['invalid_mask']
combined_data = torch.cat(combined_data, dim=1)
sample_info = {
'data_length': length,
'data_cum_length': cum_length,
'sample_info_per_sample': []}
# for caption task inference
if comm._CAPTION_GEN_MODE:
sample_info['data_cum_length'] = data_list[0]['sample_info']['data_cum_length']
for data_dict in data_list:
if data_dict.get('sample_info', None) is not None:
if isinstance(data_dict['sample_info'], dict):
sample_info.update(data_dict['sample_info'])
elif isinstance(data_dict['sample_info'], list):
if isinstance(data_dict['sample_info'][0], dict):
sample_info.update(data_dict['sample_info'][0])
sample_info['sample_info_per_sample'].append(data_dict['sample_info'])
moe_embedding = None
for data_dict in data_list:
if 'data_type' in data_dict:
data_type = data_dict['data_type']
if 'moe_embedding' in data_dict:
moe_embedding = data_dict['moe_embedding']
return {
'data': combined_data,
'invalid_mask': combined_valid_mask,
'data_type': data_type,
'sample_info': sample_info,
'moe_embedding': moe_embedding,
}
def share_token_embed_ln(video_embed, token_embed):
if video_embed is not None and token_embed is not None:
del video_embed.embeddings_norm
video_embed.embeddings_norm = token_embed.embeddings_norm
|