File size: 8,119 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import math
from bisect import bisect_right
import warnings
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from uniperceiver.config import configurable
from .build import LR_SCHEDULER_REGISTRY
from uniperceiver.utils import comm
@LR_SCHEDULER_REGISTRY.register()
class WarmupConstant(LambdaLR):
""" Linear warmup and then constant.
Linearly increases learning rate schedule from 0 to 1 over `warmup_steps` training steps.
Keeps learning rate schedule equal to 1. after warmup_steps.
"""
@configurable
def __init__(
self,
*,
optimizer,
warmup_steps,
last_epoch=-1):
self.warmup_steps = warmup_steps
super(WarmupConstant, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
@classmethod
def from_config(cls, cfg, optimizer, data_size):
return {
"optimizer": optimizer,
"warmup_steps": cfg.LR_SCHEDULER.WARMUP * data_size,
"last_epoch": -1
}
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
return 1.
@LR_SCHEDULER_REGISTRY.register()
class WarmupLinear(LambdaLR):
""" Linear warmup and then linear decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps.
"""
@configurable
def __init__(
self,
*,
optimizer,
min_lr,
warmup_steps,
t_total,
last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.min_lr = min_lr
super(WarmupLinear, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
@classmethod
def from_config(cls, cfg, optimizer, data_size):
return {
"optimizer": optimizer,
"min_lr": cfg.LR_SCHEDULER.MIN_LR / cfg.SOLVER.BASE_LR,
"warmup_steps": cfg.LR_SCHEDULER.WARMUP if cfg.INFERENCE.ITER_BASED else (cfg.LR_SCHEDULER.WARMUP * data_size),
"t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size), # total iterations
"last_epoch": -1
}
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
return max(self.min_lr, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))
@LR_SCHEDULER_REGISTRY.register()
class WarmupCosine(LambdaLR):
""" Linear warmup and then cosine decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
"""
@configurable
def __init__(
self,
*,
optimizer,
min_lr,
warmup_steps,
t_total,
cycles=.5,
last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
self.min_lr = min_lr
super(WarmupCosine, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
if comm.get_rank() == 0:
print('warmup cosine lr, warmup_steps: {} t_total {} .'.format(warmup_steps, t_total))
@classmethod
def from_config(cls, cfg, optimizer, data_size):
return {
"optimizer": optimizer,
"min_lr": cfg.LR_SCHEDULER.MIN_LR / cfg.SOLVER.BASE_LR,
"warmup_steps": cfg.LR_SCHEDULER.WARMUP if cfg.INFERENCE.ITER_BASED else (cfg.LR_SCHEDULER.WARMUP * data_size),
"t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size), # total iterations
"cycles": .5,
"last_epoch": -1
}
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
return max(self.min_lr, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
@LR_SCHEDULER_REGISTRY.register()
class WarmupCosineWithHardRestarts(LambdaLR):
""" Linear warmup and then cosine cycles with hard restarts.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
learning rate (with hard restarts).
"""
@configurable
def __init__(
self,
*,
optimizer,
warmup_steps,
t_total,
cycles=1.,
last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineWithHardRestarts, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
@classmethod
def from_config(cls, cfg, optimizer, data_size):
return {
"optimizer": optimizer,
"warmup_steps": cfg.LR_SCHEDULER.WARMUP * data_size,
"t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size), # total iterations
"cycles": 1.,
"last_epoch": -1
}
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))))
@LR_SCHEDULER_REGISTRY.register()
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
@configurable
def __init__(
self,
*,
optimizer,
milestones,
gamma=0.1,
warmup_factor=1.0 / 3,
warmup_iters=500,
warmup_method="linear",
last_epoch=-1,
):
if not list(milestones) == sorted(milestones):
raise ValueError(
"Milestones should be a list of" " increasing integers. Got {}",
milestones,
)
if warmup_method not in ("constant", "linear"):
raise ValueError(
"Only 'constant' or 'linear' warmup_method accepted"
"got {}".format(warmup_method)
)
self.milestones = milestones
self.gamma = gamma
self.warmup_factor = warmup_factor
self.warmup_iters = warmup_iters
self.warmup_method = warmup_method
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)
@classmethod
def from_config(cls, cfg, optimizer, data_size):
steps = [step * data_size for step in cfg.LR_SCHEDULER.STEPS]
return {
"optimizer": optimizer,
"milestones": steps,
"gamma": cfg.LR_SCHEDULER.GAMMA,
"warmup_factor": cfg.LR_SCHEDULER.WARMUP_FACTOR,
"warmup_iters": cfg.LR_SCHEDULER.WARMUP * data_size,
"warmup_method": cfg.LR_SCHEDULER.WARMUP_METHOD,
"last_epoch": -1
}
def get_lr(self):
warmup_factor = 1
if self.last_epoch < self.warmup_iters:
if self.warmup_method == "constant":
warmup_factor = self.warmup_factor
elif self.warmup_method == "linear":
alpha = self.last_epoch / self.warmup_iters
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
return [
base_lr
* warmup_factor
* self.gamma ** bisect_right(self.milestones, self.last_epoch)
for base_lr in self.base_lrs
]
|