File size: 8,119 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import math
from bisect import bisect_right
import warnings
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from uniperceiver.config import configurable
from .build import LR_SCHEDULER_REGISTRY
from uniperceiver.utils import comm


@LR_SCHEDULER_REGISTRY.register()
class WarmupConstant(LambdaLR):
    """ Linear warmup and then constant.
        Linearly increases learning rate schedule from 0 to 1 over `warmup_steps` training steps.
        Keeps learning rate schedule equal to 1. after warmup_steps.
    """
    @configurable
    def __init__(
        self,
        *,
        optimizer,
        warmup_steps,
        last_epoch=-1):
        self.warmup_steps = warmup_steps
        super(WarmupConstant, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)

    @classmethod
    def from_config(cls, cfg, optimizer, data_size):
        return {
            "optimizer": optimizer,
            "warmup_steps": cfg.LR_SCHEDULER.WARMUP * data_size,
            "last_epoch": -1
        }

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        return 1.

@LR_SCHEDULER_REGISTRY.register()
class WarmupLinear(LambdaLR):
    """ Linear warmup and then linear decay.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps.
    """
    @configurable
    def __init__(
        self,
        *,
        optimizer,
        min_lr,
        warmup_steps,
        t_total,
        last_epoch=-1):

        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.min_lr = min_lr
        super(WarmupLinear, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)

    @classmethod
    def from_config(cls, cfg, optimizer, data_size):
        return {
            "optimizer": optimizer,
            "min_lr": cfg.LR_SCHEDULER.MIN_LR / cfg.SOLVER.BASE_LR,
            "warmup_steps": cfg.LR_SCHEDULER.WARMUP if cfg.INFERENCE.ITER_BASED else (cfg.LR_SCHEDULER.WARMUP * data_size),
            "t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size),  # total iterations
            "last_epoch": -1
        }

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        return max(self.min_lr, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))

@LR_SCHEDULER_REGISTRY.register()
class WarmupCosine(LambdaLR):
    """ Linear warmup and then cosine decay.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
        If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
    """
    @configurable
    def __init__(
        self,
        *,
        optimizer,
        min_lr,
        warmup_steps,
        t_total,
        cycles=.5,
        last_epoch=-1):

        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        self.min_lr = min_lr
        super(WarmupCosine, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
        if comm.get_rank() == 0:
            print('warmup cosine lr, warmup_steps: {}  t_total {} .'.format(warmup_steps, t_total))

    @classmethod
    def from_config(cls, cfg, optimizer, data_size):
        return {
            "optimizer": optimizer,
            "min_lr": cfg.LR_SCHEDULER.MIN_LR / cfg.SOLVER.BASE_LR,
            "warmup_steps": cfg.LR_SCHEDULER.WARMUP if cfg.INFERENCE.ITER_BASED else (cfg.LR_SCHEDULER.WARMUP * data_size),
            "t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size),  # total iterations
            "cycles": .5,
            "last_epoch": -1
        }

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
        return max(self.min_lr, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))




@LR_SCHEDULER_REGISTRY.register()
class WarmupCosineWithHardRestarts(LambdaLR):
    """ Linear warmup and then cosine cycles with hard restarts.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
        learning rate (with hard restarts).
    """
    @configurable
    def __init__(
        self,
        *,
        optimizer,
        warmup_steps,
        t_total,
        cycles=1.,
        last_epoch=-1):

        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        super(WarmupCosineWithHardRestarts, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)

    @classmethod
    def from_config(cls, cfg, optimizer, data_size):
        return {
            "optimizer": optimizer,
            "warmup_steps": cfg.LR_SCHEDULER.WARMUP * data_size,
            "t_total": cfg.SOLVER.MAX_ITER if cfg.INFERENCE.ITER_BASED else (cfg.SOLVER.EPOCH * data_size), # total iterations
            "cycles": 1.,
            "last_epoch": -1
        }

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
        if progress >= 1.0:
            return 0.0
        return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))))

@LR_SCHEDULER_REGISTRY.register()
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
    @configurable
    def __init__(
        self,
        *,
        optimizer,
        milestones,
        gamma=0.1,
        warmup_factor=1.0 / 3,
        warmup_iters=500,
        warmup_method="linear",
        last_epoch=-1,
    ):
        if not list(milestones) == sorted(milestones):
            raise ValueError(
                "Milestones should be a list of" " increasing integers. Got {}",
                milestones,
            )

        if warmup_method not in ("constant", "linear"):
            raise ValueError(
                "Only 'constant' or 'linear' warmup_method accepted"
                "got {}".format(warmup_method)
            )
        self.milestones = milestones
        self.gamma = gamma
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)

    @classmethod
    def from_config(cls, cfg, optimizer, data_size):
        steps = [step * data_size for step in cfg.LR_SCHEDULER.STEPS]
        return {
            "optimizer": optimizer,
            "milestones": steps,
            "gamma": cfg.LR_SCHEDULER.GAMMA,
            "warmup_factor": cfg.LR_SCHEDULER.WARMUP_FACTOR,
            "warmup_iters": cfg.LR_SCHEDULER.WARMUP * data_size,
            "warmup_method": cfg.LR_SCHEDULER.WARMUP_METHOD,
            "last_epoch": -1
        }

    def get_lr(self):
        warmup_factor = 1
        if self.last_epoch < self.warmup_iters:
            if self.warmup_method == "constant":
                warmup_factor = self.warmup_factor
            elif self.warmup_method == "linear":
                alpha = self.last_epoch / self.warmup_iters
                warmup_factor = self.warmup_factor * (1 - alpha) + alpha
        return [
            base_lr
            * warmup_factor
            * self.gamma ** bisect_right(self.milestones, self.last_epoch)
            for base_lr in self.base_lrs
        ]