File size: 11,898 Bytes
b067019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from transformers import pipeline
import numpy as np
import matplotlib.pyplot as plt
from lime.lime_text import LimeTextExplainer

class MentalHealthChatbot:
    def __init__(self, sentiment_model_path, disorder_model_path):
        # Load sentiment and classification models
        self.sentiment_pipeline = pipeline("text-classification", model=sentiment_model_path)
        self.classify_pipeline = pipeline("text-classification", model=disorder_model_path)

        # Label mappings
        self.label_mapping = {
            "LABEL_0": "ADHD",
            "LABEL_1": "BPD",
            "LABEL_2": "OCD",
            "LABEL_3": "PTSD",
            "LABEL_4": "Anxiety",
            "LABEL_5": "Autism",
            "LABEL_6": "Bipolar",
            "LABEL_7": "Depression",
            "LABEL_8": "Eating Disorders",
            "LABEL_9": "Health",
            "LABEL_10": "Mental Illness",
            "LABEL_11": "Schizophrenia",
            "LABEL_12": "Suicide Watch"
        }

        self.sentiment_mapping = {
            "POS": "Positive",
            "NEG": "Negative",
            "NEU": "Neutral"
        }

        self.exercise_recommendations = {
            # Exercise recommendations data as defined in the original code
        }

        # Initialize the LIME explainer
        self.explainer = LimeTextExplainer(class_names=list(self.sentiment_mapping.values()) + list(self.label_mapping.values()))

    def get_sentiment(self, text):
        results = self.sentiment_pipeline(text)
        if results and isinstance(results, list):  
            best_result = results[0]
            label = self.sentiment_mapping.get(best_result["label"], "Unknown")
            confidence = best_result["score"] * 100
            return label, confidence
        return "Unknown", 0

    def get_disorder(self, text, threshold=50):
        results = self.classify_pipeline(text)
        if results and isinstance(results, list):  
            best_result = results[0]
            disorder_confidence = best_result["score"] * 100
            if disorder_confidence > threshold:
                disorder_label = self.label_mapping.get(best_result["label"], "Unknown")

                if disorder_confidence < 50:
                    risk_level = "Low Risk"
                elif 50 <= disorder_confidence <= 75:
                    risk_level = "Moderate Risk"
                else:
                    risk_level = "High Risk"

                if risk_level == "High Risk":
                    print("βœ” 🚨 Alert Notification Triggered: High risk detected!\n")
                
                return disorder_label, disorder_confidence, risk_level

        return "No significant disorder detected", 0.0, "No Risk"

    def predict_fn(self, texts):
        sentiment_output = self.sentiment_pipeline(texts)
        sentiment_probs = np.array([[item['score']] for item in sentiment_output])

        disorder_output = self.classify_pipeline(texts)
        disorder_probs = np.vstack([np.array([item['score']]) for item in disorder_output])

        result = np.hstack([sentiment_probs, disorder_probs])
        return result

    def explain_text(self, text):
        explanation = self.explainer.explain_instance(text, self.predict_fn, num_features=5, num_samples=25)
        explanation.as_pyplot_figure()  # Display the plot
        plt.show()

        explanation_str = "The model's prediction is influenced by the following factors: "
        explanation_str += "; ".join([f'"{feature}" contributes with a weight of {weight:.4f}' 
                                      for feature, weight in explanation.as_list()]) + "."
        return explanation_str

    def get_recommendations(self,condition, risk_level):
        exercise_recommendations = {
            "Depression": {
            "High Risk": ["Try 10 minutes of deep breathing.", "Go for a 15-minute walk in nature.", "Practice guided meditation."],
            "Moderate Risk": ["Write down 3 things you’re grateful for.", "Do light stretching or yoga for 10 minutes.", "Listen to calming music."],
            "Low Risk": ["Engage in a hobby you enjoy.", "Call a friend and have a short chat.", "Do a short 5-minute mindfulness exercise."]
            },
            "Anxiety": {
            "High Risk": ["Try progressive muscle relaxation.", "Use the 4-7-8 breathing technique.", "Write down your thoughts to clear your mind."],
            "Moderate Risk": ["Listen to nature sounds or white noise.", "Take a 15-minute break from screens.", "Try a short visualization exercise."],
            "Low Risk": ["Practice slow, deep breathing for 5 minutes.", "Drink herbal tea and relax.", "Read a book for 10 minutes."]
            },
            "Bipolar": {
            "High Risk": ["Engage in grounding techniques like 5-4-3-2-1.", "Try slow-paced walking in a quiet area.", "Listen to calm instrumental music."],
            "Moderate Risk": ["Do a 10-minute gentle yoga session.", "Keep a mood journal for self-awareness.", "Practice self-affirmations."],
            "Low Risk": ["Engage in light exercise like jogging.", "Practice mindful eating for a meal.", "Do deep breathing exercises."]
            },
            "OCD": {
            "High Risk": ["Use exposure-response prevention techniques.", "Try 5 minutes of guided meditation.", "Write down intrusive thoughts and challenge them."],
            "Moderate Risk": ["Take a short break from triggers.", "Practice progressive relaxation.", "Engage in a calming activity like drawing."],
            "Low Risk": ["Practice deep breathing with slow exhales.", "Listen to soft music and relax.", "Try focusing on one simple task at a time."]
              },
              "PTSD": {
            "High Risk": ["Try grounding techniques (hold an object, describe it).", "Do 4-7-8 breathing for relaxation.", "Write in a trauma journal."],
            "Moderate Risk": ["Practice mindfulness for 5 minutes.", "Engage in slow, rhythmic movement (walking, stretching).", "Listen to soothing music."],
            "Low Risk": ["Try positive visualization techniques.", "Engage in light exercise or stretching.", "Spend time in a quiet, safe space."]
            },
            "Suicide Watch": {
            "High Risk": ["Immediately reach out to a mental health professional.", "Call a trusted friend or family member.", "Try a grounding exercise like cold water on hands."],
            "Moderate Risk": ["Write a letter to your future self.", "Listen to uplifting music.", "Practice self-care (take a bath, make tea, etc.)."],
            "Low Risk": ["Watch a motivational video.", "Write down your emotions in a journal.", "Spend time with loved ones."]
            },
            "ADHD": {
            "High Risk": ["Try structured routines for the day.", "Use a timer for focus sessions.", "Engage in short bursts of physical activity."],
            "Moderate Risk": ["Do a quick exercise routine (jumping jacks, stretches).", "Use fidget toys to channel energy.", "Try meditation with background music."],
            "Low Risk": ["Practice deep breathing.", "Listen to classical or instrumental music.", "Organize your workspace."]
            },
            "BPD": {
            "High Risk": ["Try dialectical behavior therapy (DBT) techniques.", "Practice mindfulness.", "Use a weighted blanket for comfort."],
            "Moderate Risk": ["Write down emotions and analyze them.", "Engage in creative activities like painting.", "Listen to calming podcasts."],
            "Low Risk": ["Watch a lighthearted movie.", "Do breathing exercises.", "Call a friend for a short chat."]
            },
            "Autism": {
            "High Risk": ["Engage in deep-pressure therapy (weighted blanket).", "Use noise-canceling headphones.", "Try sensory-friendly relaxation techniques."],
            "Moderate Risk": ["Do repetitive physical activities like rocking.", "Practice structured breathing exercises.", "Engage in puzzles or memory games."],
            "Low Risk": ["Spend time in a quiet space.", "Listen to soft instrumental music.", "Follow a structured schedule."]
            },
            "Schizophrenia": {
            "High Risk": ["Seek immediate support from a trusted person.", "Try simple grounding exercises.", "Use distraction techniques like puzzles."],
            "Moderate Risk": ["Engage in light physical activity.", "Listen to calming sounds or music.", "Write thoughts in a journal."],
            "Low Risk": ["Read a familiar book.", "Do a 5-minute breathing exercise.", "Try progressive muscle relaxation."]
            },
            "Eating Disorders": {
            "High Risk": ["Seek professional help immediately.", "Try self-affirmations.", "Practice intuitive eating (listen to body cues)."],
            "Moderate Risk": ["Engage in mindful eating.", "Write down your emotions before meals.", "Do light stretching after meals."],
            "Low Risk": ["Try a gentle walk after eating.", "Listen to calming music.", "Write a gratitude journal about your body."]
            },
            "Mental Health": {
            "High Risk": ["Reach out to a mental health professional.", "Engage in deep relaxation techniques.", "Talk to a support group."],
            "Moderate Risk": ["Write in a daily journal.", "Practice guided meditation.", "Do light physical activities like walking."],
            "Low Risk": ["Try deep breathing exercises.", "Watch an uplifting video.", "Call a friend for a chat."]
            }
            
        }
        if condition in exercise_recommendations:
            if risk_level in exercise_recommendations[condition]:
                return exercise_recommendations[condition][risk_level]
        return ["No specific recommendations available."]

    def run_chat(self, text):
        sentiment, sentiment_confidence = self.get_sentiment(text)
        disorder_label, disorder_confidence, risk_level = self.get_disorder(text)

        print("\n🧠 Mental Health Chatbot Assessment")
        print("--------------------------------------------------")
        print(f"πŸ“¨ You said: \"{text}\"\n")
        print("Thank you for sharing. Let's take a closer look at what you're feeling.\n")

        print("πŸ“ Analysis Summary:")
        print(f"  πŸ’¬ Sentiment: {sentiment}  |  Confidence: {sentiment_confidence:.2f}%")
        print(f"  🩺 Identified Condition: {disorder_label}  |  Confidence: {disorder_confidence:.2f}%")
        print(f"  🚦 Risk Level: {risk_level}")

        print("\nπŸ” Explanation (LIME Interpretation):")
        print("--------------------------------------------------")
        print("Here’s how the system interpreted your message using explainable AI techniques:")
        explanation_str = self.explain_text(text)
        print(explanation_str + "\n")

        print("\n🧭 Personalized Recommendations:")
        print("--------------------------------------------------")
        print("These are tailored suggestions to help guide you toward the next steps:")
        recommendations = self.get_recommendations(disorder_label, risk_level)
        for idx, action in enumerate(recommendations, 1):
            print(f"  {idx}. {action}")
        print("We encourage you to try the steps that resonate with your situation.")

        print("\nπŸ’‘βœ¨ Just a Note from Your AI Companion:")
        print("πŸ€– I'm here to provide thoughtful insights and emotional support based on your input.")
        print("πŸ‘₯ If you're seeking connection or advice, feel free to visit our 🌐 Community Support Page.")
        print("πŸ§‘β€βš•οΈ If things feel overwhelming, consider reaching out to a professional β€” either directly or with guidance from the community.")
        print("You're not alone on this journey. We're here with you. πŸ’™")
        print("------------------------------------------------------------")