harun27 commited on
Commit
595d7da
·
verified ·
1 Parent(s): 4d3aaf4

End of training

Browse files
Files changed (2) hide show
  1. README.md +112 -6
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
4
- base_model: answerdotai/ModernBERT-base
5
  tags:
6
  - generated_from_trainer
7
  model-index:
@@ -14,7 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # overall_binary
16
 
17
- This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
 
 
 
18
 
19
  ## Model description
20
 
@@ -37,15 +40,118 @@ The following hyperparameters were used during training:
37
  - train_batch_size: 8
38
  - eval_batch_size: 8
39
  - seed: 42
 
 
 
 
40
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
41
  - lr_scheduler_type: linear
42
- - num_epochs: 1
43
 
44
  ### Training results
45
 
46
- | Training Loss | Epoch | Step | Validation Loss | Classification Report |
47
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
48
- | No log | 1.0 | 24 | 0.5887 | {'0': {'precision': 1.0, 'recall': 0.045454545454545456, 'f1-score': 0.08695652173913043, 'support': 22.0}, '1': {'precision': 0.6037735849056604, 'recall': 1.0, 'f1-score': 0.7529411764705882, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.8018867924528301, 'recall': 0.5227272727272727, 'f1-score': 0.4199488491048593, 'support': 54.0}, 'weighted avg': {'precision': 0.7651991614255764, 'recall': 0.6111111111111112, 'f1-score': 0.4816140949133277, 'support': 54.0}} |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
 
51
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model: answerdotai/ModernBERT-large
5
  tags:
6
  - generated_from_trainer
7
  model-index:
 
14
 
15
  # overall_binary
16
 
17
+ This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 4.7022
20
+ - Classification Report: {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}}
21
 
22
  ## Model description
23
 
 
40
  - train_batch_size: 8
41
  - eval_batch_size: 8
42
  - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 2
45
+ - total_train_batch_size: 16
46
+ - total_eval_batch_size: 16
47
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
  - lr_scheduler_type: linear
49
+ - num_epochs: 100
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Classification Report |
54
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
55
+ | No log | 1.0 | 12 | 0.6986 | {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}} |
56
+ | No log | 2.0 | 24 | 1.3908 | {'0': {'precision': 0.4074074074074074, 'recall': 1.0, 'f1-score': 0.5789473684210527, 'support': 22.0}, '1': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 32.0}, 'accuracy': 0.4074074074074074, 'macro avg': {'precision': 0.2037037037037037, 'recall': 0.5, 'f1-score': 0.2894736842105263, 'support': 54.0}, 'weighted avg': {'precision': 0.16598079561042522, 'recall': 0.4074074074074074, 'f1-score': 0.23586744639376217, 'support': 54.0}} |
57
+ | No log | 3.0 | 36 | 0.6262 | {'0': {'precision': 0.5555555555555556, 'recall': 0.9090909090909091, 'f1-score': 0.6896551724137931, 'support': 22.0}, '1': {'precision': 0.8888888888888888, 'recall': 0.5, 'f1-score': 0.64, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.7222222222222222, 'recall': 0.7045454545454546, 'f1-score': 0.6648275862068966, 'support': 54.0}, 'weighted avg': {'precision': 0.7530864197530863, 'recall': 0.6666666666666666, 'f1-score': 0.6602298850574713, 'support': 54.0}} |
58
+ | No log | 4.0 | 48 | 1.0377 | {'0': {'precision': 0.4583333333333333, 'recall': 1.0, 'f1-score': 0.6285714285714286, 'support': 22.0}, '1': {'precision': 1.0, 'recall': 0.1875, 'f1-score': 0.3157894736842105, 'support': 32.0}, 'accuracy': 0.5185185185185185, 'macro avg': {'precision': 0.7291666666666666, 'recall': 0.59375, 'f1-score': 0.47218045112781953, 'support': 54.0}, 'weighted avg': {'precision': 0.7793209876543209, 'recall': 0.5185185185185185, 'f1-score': 0.4432191590086327, 'support': 54.0}} |
59
+ | No log | 5.0 | 60 | 0.5632 | {'0': {'precision': 1.0, 'recall': 0.36363636363636365, 'f1-score': 0.5333333333333333, 'support': 22.0}, '1': {'precision': 0.6956521739130435, 'recall': 1.0, 'f1-score': 0.8205128205128205, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.8478260869565217, 'recall': 0.6818181818181819, 'f1-score': 0.676923076923077, 'support': 54.0}, 'weighted avg': {'precision': 0.8196457326892109, 'recall': 0.7407407407407407, 'f1-score': 0.7035137701804368, 'support': 54.0}} |
60
+ | No log | 6.0 | 72 | 0.9810 | {'0': {'precision': 0.4888888888888889, 'recall': 1.0, 'f1-score': 0.6567164179104478, 'support': 22.0}, '1': {'precision': 1.0, 'recall': 0.28125, 'f1-score': 0.43902439024390244, 'support': 32.0}, 'accuracy': 0.5740740740740741, 'macro avg': {'precision': 0.7444444444444445, 'recall': 0.640625, 'f1-score': 0.5478704040771751, 'support': 54.0}, 'weighted avg': {'precision': 0.7917695473251029, 'recall': 0.5740740740740741, 'f1-score': 0.5277137348487912, 'support': 54.0}} |
61
+ | No log | 7.0 | 84 | 0.5803 | {'0': {'precision': 0.5333333333333333, 'recall': 0.7272727272727273, 'f1-score': 0.6153846153846154, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.5625, 'f1-score': 0.6428571428571429, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.6416666666666666, 'recall': 0.6448863636363636, 'f1-score': 0.6291208791208791, 'support': 54.0}, 'weighted avg': {'precision': 0.6617283950617284, 'recall': 0.6296296296296297, 'f1-score': 0.6316646316646318, 'support': 54.0}} |
62
+ | No log | 8.0 | 96 | 0.9590 | {'0': {'precision': 1.0, 'recall': 0.22727272727272727, 'f1-score': 0.37037037037037035, 'support': 22.0}, '1': {'precision': 0.6530612244897959, 'recall': 1.0, 'f1-score': 0.7901234567901234, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.8265306122448979, 'recall': 0.6136363636363636, 'f1-score': 0.5802469135802468, 'support': 54.0}, 'weighted avg': {'precision': 0.7944066515495086, 'recall': 0.6851851851851852, 'f1-score': 0.6191129401005944, 'support': 54.0}} |
63
+ | No log | 9.0 | 108 | 0.6418 | {'0': {'precision': 0.48717948717948717, 'recall': 0.8636363636363636, 'f1-score': 0.6229508196721312, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.375, 'f1-score': 0.5106382978723404, 'support': 32.0}, 'accuracy': 0.5740740740740741, 'macro avg': {'precision': 0.6435897435897436, 'recall': 0.6193181818181819, 'f1-score': 0.5667945587722358, 'support': 54.0}, 'weighted avg': {'precision': 0.6725546058879392, 'recall': 0.5740740740740741, 'f1-score': 0.5563952511981811, 'support': 54.0}} |
64
+ | No log | 10.0 | 120 | 1.4205 | {'0': {'precision': 1.0, 'recall': 0.09090909090909091, 'f1-score': 0.16666666666666666, 'support': 22.0}, '1': {'precision': 0.6153846153846154, 'recall': 1.0, 'f1-score': 0.7619047619047619, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.8076923076923077, 'recall': 0.5454545454545454, 'f1-score': 0.46428571428571425, 'support': 54.0}, 'weighted avg': {'precision': 0.7720797720797721, 'recall': 0.6296296296296297, 'f1-score': 0.519400352733686, 'support': 54.0}} |
65
+ | No log | 11.0 | 132 | 0.5985 | {'0': {'precision': 0.5128205128205128, 'recall': 0.9090909090909091, 'f1-score': 0.6557377049180327, 'support': 22.0}, '1': {'precision': 0.8666666666666667, 'recall': 0.40625, 'f1-score': 0.5531914893617021, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.6897435897435897, 'recall': 0.6576704545454546, 'f1-score': 0.6044645971398674, 'support': 54.0}, 'weighted avg': {'precision': 0.7225071225071226, 'recall': 0.6111111111111112, 'f1-score': 0.5949695771809479, 'support': 54.0}} |
66
+ | No log | 12.0 | 144 | 0.8845 | {'0': {'precision': 1.0, 'recall': 0.13636363636363635, 'f1-score': 0.24, 'support': 22.0}, '1': {'precision': 0.6274509803921569, 'recall': 1.0, 'f1-score': 0.7710843373493976, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.8137254901960784, 'recall': 0.5681818181818181, 'f1-score': 0.5055421686746988, 'support': 54.0}, 'weighted avg': {'precision': 0.7792302106027597, 'recall': 0.6481481481481481, 'f1-score': 0.5547166443551986, 'support': 54.0}} |
67
+ | No log | 13.0 | 156 | 0.5123 | {'0': {'precision': 0.8, 'recall': 0.5454545454545454, 'f1-score': 0.6486486486486487, 'support': 22.0}, '1': {'precision': 0.7435897435897436, 'recall': 0.90625, 'f1-score': 0.8169014084507042, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.7717948717948718, 'recall': 0.7258522727272727, 'f1-score': 0.7327750285496765, 'support': 54.0}, 'weighted avg': {'precision': 0.7665716999050333, 'recall': 0.7592592592592593, 'f1-score': 0.7483539877906075, 'support': 54.0}} |
68
+ | No log | 14.0 | 168 | 0.6723 | {'0': {'precision': 0.5294117647058824, 'recall': 0.8181818181818182, 'f1-score': 0.6428571428571429, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.5, 'f1-score': 0.6153846153846154, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.6647058823529413, 'recall': 0.6590909090909092, 'f1-score': 0.6291208791208791, 'support': 54.0}, 'weighted avg': {'precision': 0.689760348583878, 'recall': 0.6296296296296297, 'f1-score': 0.6265771265771266, 'support': 54.0}} |
69
+ | No log | 15.0 | 180 | 0.5997 | {'0': {'precision': 0.8, 'recall': 0.5454545454545454, 'f1-score': 0.6486486486486487, 'support': 22.0}, '1': {'precision': 0.7435897435897436, 'recall': 0.90625, 'f1-score': 0.8169014084507042, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.7717948717948718, 'recall': 0.7258522727272727, 'f1-score': 0.7327750285496765, 'support': 54.0}, 'weighted avg': {'precision': 0.7665716999050333, 'recall': 0.7592592592592593, 'f1-score': 0.7483539877906075, 'support': 54.0}} |
70
+ | No log | 16.0 | 192 | 0.8217 | {'0': {'precision': 1.0, 'recall': 0.13636363636363635, 'f1-score': 0.24, 'support': 22.0}, '1': {'precision': 0.6274509803921569, 'recall': 1.0, 'f1-score': 0.7710843373493976, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.8137254901960784, 'recall': 0.5681818181818181, 'f1-score': 0.5055421686746988, 'support': 54.0}, 'weighted avg': {'precision': 0.7792302106027597, 'recall': 0.6481481481481481, 'f1-score': 0.5547166443551986, 'support': 54.0}} |
71
+ | No log | 17.0 | 204 | 0.6980 | {'0': {'precision': 1.0, 'recall': 0.18181818181818182, 'f1-score': 0.3076923076923077, 'support': 22.0}, '1': {'precision': 0.64, 'recall': 1.0, 'f1-score': 0.7804878048780488, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.8200000000000001, 'recall': 0.5909090909090909, 'f1-score': 0.5440900562851783, 'support': 54.0}, 'weighted avg': {'precision': 0.7866666666666667, 'recall': 0.6666666666666666, 'f1-score': 0.5878674171357099, 'support': 54.0}} |
72
+ | No log | 18.0 | 216 | 0.6078 | {'0': {'precision': 0.8333333333333334, 'recall': 0.45454545454545453, 'f1-score': 0.5882352941176471, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.9375, 'f1-score': 0.8108108108108109, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7738095238095238, 'recall': 0.6960227272727273, 'f1-score': 0.699523052464229, 'support': 54.0}, 'weighted avg': {'precision': 0.7627865961199295, 'recall': 0.7407407407407407, 'f1-score': 0.7201318966024849, 'support': 54.0}} |
73
+ | No log | 19.0 | 228 | 0.5927 | {'0': {'precision': 0.68, 'recall': 0.7727272727272727, 'f1-score': 0.723404255319149, 'support': 22.0}, '1': {'precision': 0.8275862068965517, 'recall': 0.75, 'f1-score': 0.7868852459016393, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.7537931034482759, 'recall': 0.7613636363636364, 'f1-score': 0.7551447506103941, 'support': 54.0}, 'weighted avg': {'precision': 0.7674584929757344, 'recall': 0.7592592592592593, 'f1-score': 0.7610226201087729, 'support': 54.0}} |
74
+ | No log | 20.0 | 240 | 0.7118 | {'0': {'precision': 0.5625, 'recall': 0.8181818181818182, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.8181818181818182, 'recall': 0.5625, 'f1-score': 0.6666666666666666, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6903409090909092, 'recall': 0.6903409090909092, 'f1-score': 0.6666666666666666, 'support': 54.0}, 'weighted avg': {'precision': 0.7140151515151516, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}} |
75
+ | No log | 21.0 | 252 | 0.7248 | {'0': {'precision': 0.6296296296296297, 'recall': 0.7727272727272727, 'f1-score': 0.6938775510204082, 'support': 22.0}, '1': {'precision': 0.8148148148148148, 'recall': 0.6875, 'f1-score': 0.7457627118644068, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7222222222222222, 'recall': 0.7301136363636364, 'f1-score': 0.7198201314424075, 'support': 54.0}, 'weighted avg': {'precision': 0.7393689986282579, 'recall': 0.7222222222222222, 'f1-score': 0.724624313002037, 'support': 54.0}} |
76
+ | No log | 22.0 | 264 | 0.8791 | {'0': {'precision': 0.8461538461538461, 'recall': 0.5, 'f1-score': 0.6285714285714286, 'support': 22.0}, '1': {'precision': 0.7317073170731707, 'recall': 0.9375, 'f1-score': 0.821917808219178, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.7889305816135084, 'recall': 0.71875, 'f1-score': 0.7252446183953033, 'support': 54.0}, 'weighted avg': {'precision': 0.7783336807727053, 'recall': 0.7592592592592593, 'f1-score': 0.7431470609552802, 'support': 54.0}} |
77
+ | No log | 23.0 | 276 | 1.3250 | {'0': {'precision': 0.6666666666666666, 'recall': 0.7272727272727273, 'f1-score': 0.6956521739130435, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.75, 'f1-score': 0.7741935483870968, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7333333333333334, 'recall': 0.7386363636363636, 'f1-score': 0.7349228611500701, 'support': 54.0}, 'weighted avg': {'precision': 0.745679012345679, 'recall': 0.7407407407407407, 'f1-score': 0.7421952106384084, 'support': 54.0}} |
78
+ | No log | 24.0 | 288 | 2.1202 | {'0': {'precision': 0.6842105263157895, 'recall': 0.5909090909090909, 'f1-score': 0.6341463414634146, 'support': 22.0}, '1': {'precision': 0.7428571428571429, 'recall': 0.8125, 'f1-score': 0.7761194029850746, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7135338345864661, 'recall': 0.7017045454545454, 'f1-score': 0.7051328722242447, 'support': 54.0}, 'weighted avg': {'precision': 0.7189640768588137, 'recall': 0.7222222222222222, 'f1-score': 0.7182785260688428, 'support': 54.0}} |
79
+ | No log | 25.0 | 300 | 2.8170 | {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}} |
80
+ | No log | 26.0 | 312 | 2.6756 | {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}} |
81
+ | No log | 27.0 | 324 | 3.6984 | {'0': {'precision': 0.5517241379310345, 'recall': 0.7272727272727273, 'f1-score': 0.6274509803921569, 'support': 22.0}, '1': {'precision': 0.76, 'recall': 0.59375, 'f1-score': 0.6666666666666666, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.6558620689655172, 'recall': 0.6605113636363636, 'f1-score': 0.6470588235294117, 'support': 54.0}, 'weighted avg': {'precision': 0.6751468710089399, 'recall': 0.6481481481481481, 'f1-score': 0.6506899055918665, 'support': 54.0}} |
82
+ | No log | 28.0 | 336 | 3.1375 | {'0': {'precision': 0.7692307692307693, 'recall': 0.45454545454545453, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7073170731707317, 'recall': 0.90625, 'f1-score': 0.7945205479452054, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7382739212007505, 'recall': 0.6803977272727273, 'f1-score': 0.6829745596868884, 'support': 54.0}, 'weighted avg': {'precision': 0.7325411715655619, 'recall': 0.7222222222222222, 'f1-score': 0.7036312241791693, 'support': 54.0}} |
83
+ | No log | 29.0 | 348 | 3.9026 | {'0': {'precision': 0.8, 'recall': 0.36363636363636365, 'f1-score': 0.5, 'support': 22.0}, '1': {'precision': 0.6818181818181818, 'recall': 0.9375, 'f1-score': 0.7894736842105263, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.740909090909091, 'recall': 0.6505681818181819, 'f1-score': 0.6447368421052632, 'support': 54.0}, 'weighted avg': {'precision': 0.72996632996633, 'recall': 0.7037037037037037, 'f1-score': 0.6715399610136452, 'support': 54.0}} |
84
+ | No log | 30.0 | 360 | 3.8310 | {'0': {'precision': 0.6875, 'recall': 0.5, 'f1-score': 0.5789473684210527, 'support': 22.0}, '1': {'precision': 0.7105263157894737, 'recall': 0.84375, 'f1-score': 0.7714285714285715, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6990131578947368, 'recall': 0.671875, 'f1-score': 0.675187969924812, 'support': 54.0}, 'weighted avg': {'precision': 0.7011452241715399, 'recall': 0.7037037037037037, 'f1-score': 0.6930103035366194, 'support': 54.0}} |
85
+ | No log | 31.0 | 372 | 6.8192 | {'0': {'precision': 0.5, 'recall': 0.9545454545454546, 'f1-score': 0.65625, 'support': 22.0}, '1': {'precision': 0.9166666666666666, 'recall': 0.34375, 'f1-score': 0.5, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.7083333333333333, 'recall': 0.6491477272727273, 'f1-score': 0.578125, 'support': 54.0}, 'weighted avg': {'precision': 0.7469135802469135, 'recall': 0.5925925925925926, 'f1-score': 0.5636574074074074, 'support': 54.0}} |
86
+ | No log | 32.0 | 384 | 3.2849 | {'0': {'precision': 0.5862068965517241, 'recall': 0.7727272727272727, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.625, 'f1-score': 0.7017543859649122, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.693103448275862, 'recall': 0.6988636363636364, 'f1-score': 0.6842105263157894, 'support': 54.0}, 'weighted avg': {'precision': 0.7128991060025542, 'recall': 0.6851851851851852, 'f1-score': 0.6874593892137751, 'support': 54.0}} |
87
+ | No log | 33.0 | 396 | 3.9581 | {'0': {'precision': 0.7692307692307693, 'recall': 0.45454545454545453, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7073170731707317, 'recall': 0.90625, 'f1-score': 0.7945205479452054, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7382739212007505, 'recall': 0.6803977272727273, 'f1-score': 0.6829745596868884, 'support': 54.0}, 'weighted avg': {'precision': 0.7325411715655619, 'recall': 0.7222222222222222, 'f1-score': 0.7036312241791693, 'support': 54.0}} |
88
+ | No log | 34.0 | 408 | 4.0902 | {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}} |
89
+ | No log | 35.0 | 420 | 4.5899 | {'0': {'precision': 0.6470588235294118, 'recall': 0.5, 'f1-score': 0.5641025641025641, 'support': 22.0}, '1': {'precision': 0.7027027027027027, 'recall': 0.8125, 'f1-score': 0.7536231884057971, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6748807631160573, 'recall': 0.65625, 'f1-score': 0.6588628762541806, 'support': 54.0}, 'weighted avg': {'precision': 0.6800329741506212, 'recall': 0.6851851851851852, 'f1-score': 0.6764110822081837, 'support': 54.0}} |
90
+ | No log | 36.0 | 432 | 4.3260 | {'0': {'precision': 0.6521739130434783, 'recall': 0.6818181818181818, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7741935483870968, 'recall': 0.75, 'f1-score': 0.7619047619047619, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7131837307152875, 'recall': 0.7159090909090908, 'f1-score': 0.7142857142857142, 'support': 54.0}, 'weighted avg': {'precision': 0.724481845098956, 'recall': 0.7222222222222222, 'f1-score': 0.7231040564373897, 'support': 54.0}} |
91
+ | No log | 37.0 | 444 | 4.5051 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
92
+ | No log | 38.0 | 456 | 4.7642 | {'0': {'precision': 0.59375, 'recall': 0.8636363636363636, 'f1-score': 0.7037037037037037, 'support': 22.0}, '1': {'precision': 0.8636363636363636, 'recall': 0.59375, 'f1-score': 0.7037037037037037, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7286931818181819, 'recall': 0.7286931818181819, 'f1-score': 0.7037037037037037, 'support': 54.0}, 'weighted avg': {'precision': 0.75368265993266, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}} |
93
+ | No log | 39.0 | 468 | 4.7787 | {'0': {'precision': 0.59375, 'recall': 0.8636363636363636, 'f1-score': 0.7037037037037037, 'support': 22.0}, '1': {'precision': 0.8636363636363636, 'recall': 0.59375, 'f1-score': 0.7037037037037037, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7286931818181819, 'recall': 0.7286931818181819, 'f1-score': 0.7037037037037037, 'support': 54.0}, 'weighted avg': {'precision': 0.75368265993266, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}} |
94
+ | No log | 40.0 | 480 | 4.7209 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
95
+ | No log | 41.0 | 492 | 4.7059 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
96
+ | 0.3248 | 42.0 | 504 | 4.7024 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
97
+ | 0.3248 | 43.0 | 516 | 4.7017 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
98
+ | 0.3248 | 44.0 | 528 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
99
+ | 0.3248 | 45.0 | 540 | 4.7015 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
100
+ | 0.3248 | 46.0 | 552 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
101
+ | 0.3248 | 47.0 | 564 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
102
+ | 0.3248 | 48.0 | 576 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
103
+ | 0.3248 | 49.0 | 588 | 4.7017 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
104
+ | 0.3248 | 50.0 | 600 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
105
+ | 0.3248 | 51.0 | 612 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
106
+ | 0.3248 | 52.0 | 624 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
107
+ | 0.3248 | 53.0 | 636 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
108
+ | 0.3248 | 54.0 | 648 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
109
+ | 0.3248 | 55.0 | 660 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
110
+ | 0.3248 | 56.0 | 672 | 4.7017 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
111
+ | 0.3248 | 57.0 | 684 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
112
+ | 0.3248 | 58.0 | 696 | 4.7016 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
113
+ | 0.3248 | 59.0 | 708 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
114
+ | 0.3248 | 60.0 | 720 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
115
+ | 0.3248 | 61.0 | 732 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
116
+ | 0.3248 | 62.0 | 744 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
117
+ | 0.3248 | 63.0 | 756 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
118
+ | 0.3248 | 64.0 | 768 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
119
+ | 0.3248 | 65.0 | 780 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
120
+ | 0.3248 | 66.0 | 792 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
121
+ | 0.3248 | 67.0 | 804 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
122
+ | 0.3248 | 68.0 | 816 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
123
+ | 0.3248 | 69.0 | 828 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
124
+ | 0.3248 | 70.0 | 840 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
125
+ | 0.3248 | 71.0 | 852 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
126
+ | 0.3248 | 72.0 | 864 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
127
+ | 0.3248 | 73.0 | 876 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
128
+ | 0.3248 | 74.0 | 888 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
129
+ | 0.3248 | 75.0 | 900 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
130
+ | 0.3248 | 76.0 | 912 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
131
+ | 0.3248 | 77.0 | 924 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
132
+ | 0.3248 | 78.0 | 936 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
133
+ | 0.3248 | 79.0 | 948 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
134
+ | 0.3248 | 80.0 | 960 | 4.7018 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
135
+ | 0.3248 | 81.0 | 972 | 4.7020 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
136
+ | 0.3248 | 82.0 | 984 | 4.7019 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
137
+ | 0.3248 | 83.0 | 996 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
138
+ | 0.0 | 84.0 | 1008 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
139
+ | 0.0 | 85.0 | 1020 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
140
+ | 0.0 | 86.0 | 1032 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
141
+ | 0.0 | 87.0 | 1044 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
142
+ | 0.0 | 88.0 | 1056 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
143
+ | 0.0 | 89.0 | 1068 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
144
+ | 0.0 | 90.0 | 1080 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
145
+ | 0.0 | 91.0 | 1092 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
146
+ | 0.0 | 92.0 | 1104 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
147
+ | 0.0 | 93.0 | 1116 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
148
+ | 0.0 | 94.0 | 1128 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
149
+ | 0.0 | 95.0 | 1140 | 4.7021 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
150
+ | 0.0 | 96.0 | 1152 | 4.7022 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
151
+ | 0.0 | 97.0 | 1164 | 4.7022 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
152
+ | 0.0 | 98.0 | 1176 | 4.7022 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
153
+ | 0.0 | 99.0 | 1188 | 4.7022 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
154
+ | 0.0 | 100.0 | 1200 | 4.7022 | {'0': {'precision': 0.5806451612903226, 'recall': 0.8181818181818182, 'f1-score': 0.6792452830188679, 'support': 22.0}, '1': {'precision': 0.8260869565217391, 'recall': 0.59375, 'f1-score': 0.6909090909090909, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7033660589060309, 'recall': 0.7059659090909092, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.726092151057088, 'recall': 0.6851851851851852, 'f1-score': 0.686157169176037, 'support': 54.0}} |
155
 
156
 
157
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b4497c914316bded0fe045b275c9eca9c52060147f22defd370ca9c2b3eead60
3
  size 1583351632
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1193eee492a026903b1389b1d639d300fd2be84e59e7dee89e02e32f026d40c3
3
  size 1583351632