from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from diffusers.configuration_utils import ConfigMixin, register_to_config # 상대 → 절대 임포트 from diffusers.loaders import FromOriginalModelMixin # 상대 → 절대 임포트 from diffusers.utils import logging # 상대 → 절대 임포트 from diffusers.utils.accelerate_utils import apply_forward_hook # 상대 → 절대 임포트 from diffusers.models.activations import get_activation # 상대 → 절대 임포트 from diffusers.models.modeling_outputs import AutoencoderKLOutput # 상대 → 절대 임포트 from diffusers.models.modeling_utils import ModelMixin # 상대 → 절대 임포트 from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution # 상대 → 절대 임포트 logger = logging.get_logger(__name__) # pylint: disable=invalid-name CACHE_T = 2 class WanCausalConv3d(nn.Conv3d): r""" A custom 3D causal convolution layer with feature caching support. This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature caching for efficient inference. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0 """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]] = 1, padding: Union[int, Tuple[int, int, int]] = 0, ) -> None: super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ) self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0) self.padding = (0, 0, 0) def forward(self, x, cache_x=None): padding = list(self._padding) if cache_x is not None and self._padding[4] > 0: cache_x = cache_x.to(x.device) x = torch.cat([cache_x, x], dim=2) padding[4] -= cache_x.shape[2] x = F.pad(x, padding) return super().forward(x) class WanRMS_norm(nn.Module): r""" A custom RMS normalization layer. Args: dim (int): The number of dimensions to normalize over. channel_first (bool, optional): Whether the input tensor has channels as the first dimension. Default is True. images (bool, optional): Whether the input represents image data. Default is True. bias (bool, optional): Whether to include a learnable bias term. Default is False. """ def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None: super().__init__() broadcastable_dims = (1, 1, 1) if not images else (1, 1) shape = (dim, *broadcastable_dims) if channel_first else (dim,) self.channel_first = channel_first self.scale = dim**0.5 self.gamma = nn.Parameter(torch.ones(shape)) self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 def forward(self, x): return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias class WanUpsample(nn.Upsample): r""" Perform upsampling while ensuring the output tensor has the same data type as the input. Args: x (torch.Tensor): Input tensor to be upsampled. Returns: torch.Tensor: Upsampled tensor with the same data type as the input. """ def forward(self, x): return super().forward(x.float()).type_as(x) class WanResample(nn.Module): r""" A custom resampling module for 2D and 3D data. Args: dim (int): The number of input/output channels. mode (str): The resampling mode. Must be one of: - 'none': No resampling (identity operation). - 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution. - 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution. - 'downsample2d': 2D downsampling with zero-padding and convolution. - 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution. """ def __init__(self, dim: int, mode: str) -> None: super().__init__() self.dim = dim self.mode = mode if mode == "upsample2d": self.resample = nn.Sequential( WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) ) elif mode == "upsample3d": self.resample = nn.Sequential( WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) ) self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) elif mode == "downsample2d": self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) elif mode == "downsample3d": self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) else: self.resample = nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): b, c, t, h, w = x.size() if self.mode == "upsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = "Rep" feat_idx[0] += 1 else: cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep": cache_x = torch.cat( [feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2 ) if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep": cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2) if feat_cache[idx] == "Rep": x = self.time_conv(x) else: x = self.time_conv(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 x = x.reshape(b, 2, c, t, h, w) x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) x = x.reshape(b, c, t * 2, h, w) t = x.shape[2] x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) x = self.resample(x) x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4) if self.mode == "downsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = x.clone() feat_idx[0] += 1 else: cache_x = x[:, :, -1:, :, :].clone() x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) feat_cache[idx] = cache_x feat_idx[0] += 1 return x class WanResidualBlock(nn.Module): r""" A custom residual block module. Args: in_dim (int): Number of input channels. out_dim (int): Number of output channels. dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0. non_linearity (str, optional): Type of non-linearity to use. Default is "silu". """ def __init__( self, in_dim: int, out_dim: int, dropout: float = 0.0, non_linearity: str = "silu", ) -> None: super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.nonlinearity = get_activation(non_linearity) self.norm1 = WanRMS_norm(in_dim, images=False) self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1) self.norm2 = WanRMS_norm(out_dim, images=False) self.dropout = nn.Dropout(dropout) self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1) self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): h = self.conv_shortcut(x) x = self.norm1(x) x = self.nonlinearity(x) if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv1(x) x = self.norm2(x) x = self.nonlinearity(x) x = self.dropout(x) if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv2(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv2(x) return x + h class WanAttentionBlock(nn.Module): r""" Causal self-attention with a single head. Args: dim (int): The number of channels in the input tensor. """ def __init__(self, dim): super().__init__() self.dim = dim self.norm = WanRMS_norm(dim) self.to_qkv = nn.Conv2d(dim, dim * 3, 1) self.proj = nn.Conv2d(dim, dim, 1) def forward(self, x): identity = x batch_size, channels, time, height, width = x.size() x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width) x = self.norm(x) qkv = self.to_qkv(x) qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1) qkv = qkv.permute(0, 1, 3, 2).contiguous() q, k, v = qkv.chunk(3, dim=-1) x = F.scaled_dot_product_attention(q, k, v) x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width) x = self.proj(x) x = x.view(batch_size, time, channels, height, width) x = x.permute(0, 2, 1, 3, 4) return x + identity class WanMidBlock(nn.Module): """ Middle block for WanVAE encoder and decoder. Args: dim (int): Number of input/output channels. dropout (float): Dropout rate. non_linearity (str): Type of non-linearity to use. """ def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1): super().__init__() self.dim = dim resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)] attentions = [] for _ in range(num_layers): attentions.append(WanAttentionBlock(dim)) resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity)) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward(self, x, feat_cache=None, feat_idx=[0]): x = self.resnets[0](x, feat_cache, feat_idx) for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: x = attn(x) x = resnet(x, feat_cache, feat_idx) return x class WanEncoder3d(nn.Module): r""" A 3D encoder module. Args: dim (int): The base number of channels in the first layer. z_dim (int): The dimensionality of the latent space. dim_mult (list of int): Multipliers for the number of channels in each block. num_res_blocks (int): Number of residual blocks in each block. attn_scales (list of float): Scales at which to apply attention mechanisms. temperal_downsample (list of bool): Whether to downsample temporally in each block. dropout (float): Dropout rate for the dropout layers. non_linearity (str): Type of non-linearity to use. """ def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, non_linearity: str = "silu", ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample self.nonlinearity = get_activation(non_linearity) dims = [dim * u for u in [1] + dim_mult] scale = 1.0 self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1) self.down_blocks = nn.ModuleList([]) for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): for _ in range(num_res_blocks): self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout)) if scale in attn_scales: self.down_blocks.append(WanAttentionBlock(out_dim)) in_dim = out_dim if i != len(dim_mult) - 1: mode = "downsample3d" if temperal_downsample[i] else "downsample2d" self.down_blocks.append(WanResample(out_dim, mode=mode)) scale /= 2.0 self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1) self.norm_out = WanRMS_norm(out_dim, images=False) self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1) self.gradient_checkpointing = False def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv_in(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv_in(x) for layer in self.down_blocks: if feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) x = self.mid_block(x, feat_cache, feat_idx) x = self.norm_out(x) x = self.nonlinearity(x) if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv_out(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv_out(x) return x class WanUpBlock(nn.Module): """ A block that handles upsampling for the WanVAE decoder. Args: in_dim (int): Input dimension out_dim (int): Output dimension num_res_blocks (int): Number of residual blocks dropout (float): Dropout rate upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d') non_linearity (str): Type of non-linearity to use """ def __init__( self, in_dim: int, out_dim: int, num_res_blocks: int, dropout: float = 0.0, upsample_mode: Optional[str] = None, non_linearity: str = "silu", ): super().__init__() self.in_dim = in_dim self.out_dim = out_dim resnets = [] current_dim = in_dim for _ in range(num_res_blocks + 1): resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity)) current_dim = out_dim self.resnets = nn.ModuleList(resnets) self.upsamplers = None if upsample_mode is not None: self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)]) self.gradient_checkpointing = False def forward(self, x, feat_cache=None, feat_idx=[0]): for resnet in self.resnets: if feat_cache is not None: x = resnet(x, feat_cache, feat_idx) else: x = resnet(x) if self.upsamplers is not None: if feat_cache is not None: x = self.upsamplers[0](x, feat_cache, feat_idx) else: x = self.upsamplers[0](x) return x class WanDecoder3d(nn.Module): r""" A 3D decoder module. Args: dim (int): The base number of channels in the first layer. z_dim (int): The dimensionality of the latent space. dim_mult (list of int): Multipliers for the number of channels in each block. num_res_blocks (int): Number of residual blocks in each block. attn_scales (list of float): Scales at which to apply attention mechanisms. temperal_upsample (list of bool): Whether to upsample temporally in each block. dropout (float): Dropout rate for the dropout layers. non_linearity (str): Type of non-linearity to use. """ def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_upsample=[False, True, True], dropout=0.0, non_linearity: str = "silu", ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_upsample = temperal_upsample self.nonlinearity = get_activation(non_linearity) dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] scale = 1.0 / 2 ** (len(dim_mult) - 2) self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1) self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1) self.up_blocks = nn.ModuleList([]) for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): if i > 0: in_dim = in_dim // 2 upsample_mode = None if i != len(dim_mult) - 1: upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d" up_block = WanUpBlock( in_dim=in_dim, out_dim=out_dim, num_res_blocks=num_res_blocks, dropout=dropout, upsample_mode=upsample_mode, non_linearity=non_linearity, ) self.up_blocks.append(up_block) if upsample_mode is not None: scale *= 2.0 self.norm_out = WanRMS_norm(out_dim, images=False) self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1) self.gradient_checkpointing = False def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv_in(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv_in(x) x = self.mid_block(x, feat_cache, feat_idx) for up_block in self.up_blocks: x = up_block(x, feat_cache, feat_idx) x = self.norm_out(x) x = self.nonlinearity(x) if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) x = self.conv_out(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv_out(x) return x class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Introduced in [Wan 2.1]. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). """ _supports_gradient_checkpointing = False @register_to_config def __init__( self, base_dim: int = 96, z_dim: int = 16, dim_mult: Tuple[int] = [1, 2, 4, 4], num_res_blocks: int = 2, attn_scales: List[float] = [], temperal_downsample: List[bool] = [False, True, True], dropout: float = 0.0, latents_mean: List[float] = [ -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921, ], latents_std: List[float] = [ 2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160, ], ) -> None: super().__init__() self.z_dim = z_dim self.temperal_downsample = temperal_downsample self.temperal_upsample = temperal_downsample[::-1] self.encoder = WanEncoder3d( base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout ) self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1) self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1) self.decoder = WanDecoder3d( base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout ) def clear_cache(self): def _count_conv3d(model): count = 0 for m in model.modules(): if isinstance(m, WanCausalConv3d): count += 1 return count self._conv_num = _count_conv3d(self.decoder) self._conv_idx = [0] self._feat_map = [None] * self._conv_num self._enc_conv_num = _count_conv3d(self.encoder) self._enc_conv_idx = [0] self._enc_feat_map = [None] * self._enc_conv_num def _encode(self, x: torch.Tensor) -> torch.Tensor: self.clear_cache() t = x.shape[2] iter_ = 1 + (t - 1) // 4 for i in range(iter_): self._enc_conv_idx = [0] if i == 0: out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) else: out_ = self.encoder( x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx, ) out = torch.cat([out, out_], 2) enc = self.quant_conv(out) mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :] enc = torch.cat([mu, logvar], dim=1) self.clear_cache() return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: r""" Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: self.clear_cache() iter_ = z.shape[2] x = self.post_quant_conv(z) for i in range(iter_): self._conv_idx = [0] if i == 0: out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) else: out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) out = torch.cat([out, out_], 2) out = torch.clamp(out, min=-1.0, max=1.0) self.clear_cache() if not return_dict: return (out,) return DecoderOutput(sample=out) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, torch.Tensor]: """ Args: sample (`torch.Tensor`): Input sample. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z, return_dict=return_dict) return dec