|
from transformers import BertTokenizer, BertForSequenceClassification
|
|
import torch
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('./models/pretrained')
|
|
model = BertForSequenceClassification.from_pretrained('./models/pretrained')
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
def model_predict(text: str):
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
prediction = torch.argmax(logits, dim=1).item()
|
|
return 'SPAM' if prediction == 1 else 'HAM'
|
|
|
|
def predict():
|
|
text = "Hello, do you know with this crypto you can be rich? contact us in 88888"
|
|
predicted_label = model_predict(text)
|
|
print(f"1. Predicted class: {predicted_label}")
|
|
|
|
text = "Help me richard!"
|
|
predicted_label = model_predict(text)
|
|
print(f"2. Predicted class: {predicted_label}")
|
|
|
|
text = "You can buy loopstation for 100$, try buyloopstation.com"
|
|
predicted_label = model_predict(text)
|
|
print(f"3. Predicted class: {predicted_label}")
|
|
|
|
text = "Mate, I try to contact your phone, where are you?"
|
|
predicted_label = model_predict(text)
|
|
print(f"4. Predicted class: {predicted_label}")
|
|
|
|
if __name__ == "__main__":
|
|
predict() |